
ibRESEARCH ARTICLE 

VOL. 46 | NO. 2 | MAY-AUGUST 2025 | PP 1-17

E-LOCATION ID: e1462

ABSTRACT 
In medical imaging for Pap smear tests, accurately identifying regions of interest, such as the nucleus and cytoplasm, 
remains a critical challenge due to the complex morphology and overlapping structures in cervical cell images. 
This complexity increases the risk of misidentification, potentially leading to false positives in computer-assisted 
diagnosis. To address this issue, this study introduces a novel approach by developing and evaluating a framework 
for the precise segmentation of nuclei and cytoplasm in cervical cell images using a cGAN-based model, Pix2Pix, 
applied to a dataset validated by specialists. The generated images are compared with target images, converted to 
binary, and an AND operation is performed to evaluate pixel overlap in the areas of interest. The evaluation metrics 
highlight a segmentation accuracy of 88.8 % and sensitivity of 89.62 % for nuclei, while for cytoplasm, precision 
reached 89.62 % and sensitivity 99.34 %. The Jaccard indices were 80.89 % for nuclei and 96.71 % for cytoplasm. 
These results demonstrate the effectiveness of the model in segmenting nuclei and cytoplasm in cervical cells. 
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RESUMEN 
En el campo de las imágenes médicas para la prueba de Papanicolaou, identificar con precisión las regiones de interés, 
como el núcleo y el citoplasma, sigue siendo un desafío crítico debido a la compleja morfología y las estructuras 
superpuestas en las imágenes de células cervicales. Esta complejidad aumenta el riesgo de identificaciones erróneas, 
lo que podría llevar a falsos positivos en el diagnóstico asistido por computadora. Para abordar este problema, este 
estudio presenta un enfoque novedoso mediante el desarrollo y evaluación de un marco para la segmentación precisa 
de núcleos y citoplasmas en imágenes de células cervicales, utilizando un modelo basado en cGAN, Pix2Pix, aplicado 
a un conjunto de datos validado por especialistas. Las imágenes generadas se compararon con las imágenes objetivo, 
se convirtieron a formato binario y se realizó una operación AND para evaluar la superposición de píxeles en las áreas 
de interés. Las métricas de evaluación destacaron una precisión de segmentación del 88.8 % y una sensibilidad del 
89.62 % para los núcleos, mientras que, para el citoplasma, la precisión alcanzó el 89.62 % y la sensibilidad el 99.34 
%. Los índices de Jaccard fueron del 80.89 % para los núcleos y del 96.71 % para el citoplasma. Estos resultados 
demuestran la efectividad del modelo en la segmentación de núcleos y citoplasmas en células cervicales.

PALABRAS CLAVE: cáncer, cGAN, segmentación, PAP, Pix2Pix



3 REVISTA MEXICANA DE INGENIERÍA BIOMÉDICA | VOL. 46 | NO. 2 | MAY-AUGUST 2025

INTRODUCTION

Cervical cancer according to the World Health Organization is a type of cancer that originates in the cells of the 
cervix, which is the lower part of the uterus that extends into the vagina, and is one of the leading causes of cancer 
in women worldwide. There are different carcinogenic agents or factors, such as radiation, chemicals, tobacco 
smoke and infectious agents. Additionally, abnormalities can arise during cell replication. These factors may be 
hereditary, environmental or related to lifestyle[1][2][3][4].

For diagnosis, the cervical cancer screening method is performed via the Papanicolaou test (PAP) or cervical cytol-
ogy. Developed by Dr. George Papanicolaou in 1941, it revolutionized the field by allowing early detection of cellu-
lar abnormalities in the cervix. This test has become a common practice and a fundamental tool for women's health. 
The procedure involves collecting a sample of cells from the cervix and nearby areas. In a laboratory, the samples 
are then examined on smear slides to check for changes in cell morphology and texture. Analyzing these changes is 
essential for ensuring early diagnosis, as this type of cancer can be detected at very early and opportune stages[5][6]. 
According to the National Cancer Institute, Cervical Intraepithelial Neoplasia (CIN) is a long phase of preinvasive 
diseases that proceed to invasive squamous cell cervical cancers, characterized by abnormal changes in the cells of 
the cervix[7][8]. Addressing a complex problem such as the diagnosis of cervical cancer requires technicians and doc-
tors specialized in the field.  It also takes time for these professionals to analyze and interpret the images to provide 
an accurate diagnosis.

Analyzing patterns in abnormal cell growth patterns, provides relevant information for a computer-assisted diag-
nosis (CAD). Key anatomical features, such as shape, the relationship between nucleus and cytoplasm, color and 
clustering, among others, are relevant in this type of analysis, since changes in these are indicative of neoplasia[9][10].

In the field of biomedical image segmentation, particularly for PAP images, several studies have explored nuclei 
and cytoplasm segmentation. Traditional methods not based on Generative Adversarial Networks (GAN) include the 
Mean-Shift clustering algorithm, which is used to obtain Regions of Interest (ROI) in cellular nucleus segmentation, 
followed by flexible mathematical morphology to separate overlapping nuclei. Other approaches include the 
Selective Edge-Enhancement Nuclei Segmentation (SEENS) method, which uses the Canny operator and mathemat-
ical morphology to extract edge information and selectively enhance the ROI edges, as well as fuzzy c-means clus-
tering, which distinguishes pixels with similar intensity values located in different spatial regions[11][12][13][14].

GANs are a very powerful tool. Although it is difficult to determine which algorithm performs better than the oth-
ers, making comparisons is key to help us approach this understanding. A neutral, multifaceted and large-scale 
study comparing different GAN type models found that hyperparameter optimization and random restarts play a 
crucial role when comparing these models to determine their best score[15].

Several improvements have been proposed for GAN-based frameworks, including enhanced versions Pix2Pix and 
U-Net. The models were trained with a dataset of 50 cells images (256x256 resolution), labeled with fluorescence in 
ROI. These cells were extracted from mouse liver. The Jaccard index was used as an evaluation metric on ROI, high-
lighting a significant improvement in the proposed method[16][17].
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A proposed solution to the problem of insufficient large training datasets in image processing is data augmentation. 
This process artificially expands the size of training datasets to prevent overfitting. GAN’s can generate artificial 
images almost indistinguishable from real ones, facilitating the creation of synthetic images that closely mimic the 
originals. In the medical field, where data acquisition is restricted by various procedures, laws, and prohibitions, 
including artificial images can significantly enhance the training process. A study demonstrated that training 
Convolutional Neural Networks (CNN) with artificially augmented datasets increased classification accuracy for 
cells by up to 12.9 % compared to models trained only with the original HERlev Pap Smear dataset. This approach 
highlights the importance of synthetic data generation in the medical field to improve the performance of deep 
learning models[18]. 

Recently, a study explored synthetic Computed Tomography (CT)  for prostate radiotherapy planning using the 
Pix2Pix model. The main focus was on optimizing the model by making adjustments to the generator, loss function, 
and hyperparameters, thereby improving the quality of the generated images. The adjusted model was compared 
with five other models, including U-Net and GAN. The results showed that by using a perceptual loss function and 
a 9-block ResNet generator, the Mean Absolute Error (MAE) was reduced to the lowest level compared to the other 
models. Additionally, the highest gamma pass rates were achieved in the CT images[19]. Another study introduced 
HistoGAN, a conditional generative adversarial network (cGAN) designed to generate high-quality synthetic histo-
pathology images for selective augmentation. By incorporating these images selectively into training datasets, the 
method achieved significant improvements in classification accuracy on two datasets: cervical histopathology (6.7 
% increase) and lymph node images (2.8 % increase) ensuring that only high confidence synthetic images were 
incorporated into training datasets[20].

Several algorithms and frameworks have been explored for the segmentation of nuclei and cytoplasm, each with 
their own advantages and limitations. Active Contours efficiently detect contours but require significant computa-
tional time to minimize energy. K-means clustering efficiently finds solutions but is slow and cannot separate over-
lapping cells. K-Nearest Neighbor (KNN) provides optimal solutions, is fast, and is noise-tolerant, but its complexity 
increases as the number of attributes grows.  Artificial Neural Networks (ANNs) are also noise-tolerant and can 
handle multiple instances; however, they are limited by overfitting, high complexity, and significant time con-
sumption. Decision Trees are easy to interpret, but errors during training can lead to inaccurate results. Support 
Vector Machines (SVMs) offer simple control, but training is slow, and finding optimal parameters for non-linear 
data can be challenging[21].

In the field of cervical cytology, accurately segmenting the nuclei and cytoplasm in Pap smear imagen constitutes 
a significant challenge due to the complex cellular morphology and overlapping structures, which increase the risk 
of diagnostic errors. The hypothesis posits that a cGan model trained on a specialist-validated dataset achieves more 
accurate segmentation compared to traditional methods. To evaluate this hypothesis, a framework is proposed 
using the SIPaKMeD dataset to create images with color semantic maps. These maps are then used to generate 
images with segmented nuclei and cytoplasm from various cell types (see Figure 1), and the images are used as 
training inputs for the Pix2Pix model. After training, a pixel-to-pixel evaluation of the binary test images is per-
formed to assess the number of pixels within each nucleus, yielding true positives and the percentage of correctly 
classified pixels. Similarly, the pixels that do not belong to the nuclei or cytoplasm are evaluated to determine false 
positives. The framework includes both quantitative and qualitative evaluations. The evaluation parameters pro-
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vide a comparison of the model's efficiency in segmenting the five cell types included in the SIPaKMeD dataset [22]. 
This approach is clinically relevant as it improves the accuracy of CAD in Pap tests. Furthermore, it represents an 
innovative application of cGAN models in this specific context, highlighting their ability to overcome the limitations 
of previous techniques and contribute to the early detection of cervical anomalies in a more accurate way. This 
research addresses an important clinical challenge by proposing a robust framework for segmentation of nuclei and 
cytoplasm in cervical cell images, aiding early cancer detection and diagnosis. The innovative aspect of the study 
lies in the integration of a conditional Generative Adversarial Network (cGAN) to achieve high segmentation accu-
racy, an approach rarely explored in cytological image analysis.

The main contribution in this article is the proposed method for labeling segmented cell nuclei from pap smears 
using the Pix2Pix cGAN’s model. The model is trained with individual images, and a qualitative and quantitative 
experiment demonstrates the capability of the cGAN in segmenting cell nuclei and cytoplasm.

MATERIALS AND METHODS

In this section, is detailed the materials and methods that ensure the reproducibility and support the results 
obtained. It is described the dataset used, including its origin, characteristics, content, and selection, as well as the 
architecture used and the hyperparameters necessary for the implementation of the cGAN. This part is detailed 
based on the recommendations and specifications of the Pix2Pix model architecture. Finally, the evaluation of the 
resulting images is presented under a framework of metric evaluation, allowing a clear and reproducible under-
standing of the applied analytical methods.

Dataset description
The SIPaKMeD dataset, which consists of 4049 isolated cell images that have been manually cropped from 966 cell 

images taken from a Pap smear slide, is widely used in both medical research and in the field of machine vision. 
There are categories associated with normal cells and cells with the presence of cervical intraepithelial neoplasia. 
Plissiti et. al. categorized according to the position of the cells in the different epithelial layers as well as the degree 
of maturation they have. The different categories of the dataset are shown in Figure 1 and Table 1, examples of cells 
from each of the categories are shown.

FIGURE 1. Imaging cells of five categories: (a) Superficial-Intermediate, (b) Parabasal, (c) Koilocytotic, (d) Dyskeratotic,
(e) Metaplastic. 
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(1)

Architecture model
The architecture of the model used is based on the U-net generating network, taking advantage of the capacity to 

preserve fine details in the output image. This is where the G generator is important on this model. As can be seen 
in Figure 2, the Pix2Pix[23] model is like to the U-Net architecture. However, Skip Connections is incorporated by 
connecting each of the layers in the encoder and its corresponding in the decoder that’s performing activations in 
between symmetrical layers.

GAN's are artificial neural networks (ANN) which map a random noise vector input (z) to an output image (y). 
However, unlike conditional Generative Adversarial Neural Network (cGAN's), they are conditioned by an input 
image that provides additional information, which in the case of this work is to generate output images (color 
semantic map) from the original image of a pap smear. It should be noted that cGAN's take better advantage of the 
morphological characteristics of the cell nuclei[24][25].

The segmented areas of interest, which in this case are the nuclei and cytoplasm in Pap test images, are an impor-
tant part of identification. These areas will provide relevant information for the training of a model that allows the 
identification of any type of cervical cancer. To do this, the use of a Deep Learning model called Pix2Pix is pro-
posed. The model is a cGAN, that distinguishes itself by its ability to learn the relationship between an input image 
and a corresponding output image in a training dataset. This model is based on the mathematical formulation of 
GANs, where a generating function G is employed, which transforms an input image x and a basis distribution func-
tion F into an output image generated y, while a discriminator function D evaluates the authenticity of the gener-
ated image compared to real images, so given the vector x and a random vector z to y, (G:{z,y}→y), the difference lies 
in the fact that cGAN's are conditioned to a style depended on the objective, in this case a semantic color map. In 
summary, this model learns to map input images to target images, such as semantic color maps, by employing a 
generator that creates images and a discriminator that evaluates their authenticity against real ones.

Mathematically, the objective of the cGAN can be expressed through Equation (1). representing x, the segmenta-
tion mask (segmented cell nucleus and cytoplasm). While G(x) is the generated image of the segmented core.
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CCaatteeggoorryy  NNoo..  ooff  iimmaaggeess  NNoo..  ooff  cceellllss  

Superficial/Intermediate 126 813 
Parabasal 108 787 

Koilocytotic 238 825 
Metaplastic 271 793 

Dyskeratotic 223 813 
Total 996 4049 

 

TABLE  1. Dataset categories.
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𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐺𝐺, 𝐷𝐷) =  𝔼𝔼(𝑥𝑥,𝑦𝑦)[𝑙𝑙𝑙𝑙𝑙𝑙 𝐷𝐷(𝑥𝑥, 𝑦𝑦)]

+ 𝔼𝔼(𝑥𝑥,𝑧𝑧)[𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝐷𝐷(𝑥𝑥, 𝑦𝑦))] 
 

G is the one who makes the attempt to minimize the objective against the antagonist D, which tries to maximize 
it. In other words, minGmaxDLcGAN(G,D). The definition of the loss of both the generator and the discriminator is 
given by Equation (2) and (3).
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The final goal of the generator and discriminator can be expressed as follows:

Revista Mexicana de Ingeniería Biomédica 

 
𝐿𝐿gen(𝐺𝐺, 𝐷𝐷) =  𝔼𝔼𝑥𝑥 [log (1 − 𝐷𝐷(𝑥𝑥, 𝐺𝐺(𝑥𝑥)))]

+ λ𝐸𝐸(𝑥𝑥,𝑦𝑦)[∥ 𝑦𝑦 − 𝐺𝐺(𝑥𝑥) ∥1]
 

 

(2)

(3)

(4)

(5)
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𝐿𝐿dis(𝐺𝐺, 𝐷𝐷) =  𝔼𝔼(𝑥𝑥,𝑦𝑦)[log(1 − 𝐷𝐷(𝑥𝑥, 𝑦𝑦))]
+ 𝐸𝐸𝑥𝑥[𝑙𝑙𝑙𝑙𝑙𝑙(−𝐷𝐷(𝑥𝑥, 𝐺𝐺(𝑥𝑥)))]
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𝐺𝐺∗ = argmin 𝐿𝐿gen(𝐺𝐺, 𝐷𝐷)

= argmin max (𝐿𝐿𝑐𝑐GAN(𝐺𝐺, 𝐷𝐷)
+ λ𝐿𝐿𝐿𝐿1(𝐺𝐺)) 

                   G                               G          D 

 

𝐷𝐷∗ = argmin 𝐿𝐿dis(𝐺𝐺, 𝐷𝐷) = argmin max 𝐿𝐿𝑐𝑐GAN(𝐺𝐺, 𝐷𝐷) 
                            D                                G          D 

 

 
The status-of-the-art suggest an architecture of encoder-decoder-discriminator as is represented in Figure 2.a and 

Figure 2.b. This architecture was designed so that the output image is coherent with the input image. The encoder 
reduces the dimensionality of the image to capture important features in a more compressed format, while the 
decoder undertakes the task of reconstructing the image from the aforementioned features, ensuring that the 
important attributes of the image are preserved with the best possible accuracy. The parameter λ is a weighting 
parameter that balances the importance of the L1 loss and the adversarial loss in the objective function of the 
Pix2Pix model, in other words, this value effectively balances the two components and reduces visual artifacts in 
various applications. Following the recommendation of the model’s paper, λ was set to 100, as this value effectively 
balances the two loss components and reduces visual artifacts[23]. In comparison, the discriminator, a crucial com-
ponent of the architecture, evaluates whether the generated images are distinguishable from real images, thereby 
providing feedback during the training process. An important feature of this architecture is the use of skip connec-
tions, which, as the name suggests, skip one or more layers in the cGAN and feed the output of one layer to the layer 
following the skipped layer(s). In such a way that it can be expressed under the following configuration:

encoder:
C64-C128-C256-C512-C512-C512-C512-C512

decoder:
CD512-CD512-CD512-C512-C256-C128-C64

discriminator:
C64-C128-C256-C512-C512-C512
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Where Ck is a Convolution-BatchNorm-ReLU layer with k filters. CDk refers to a Convolution-BatchNorm-Dropout-
ReLU layer, recommending a 50 % dropout rate and 6x6 spatial filters, with a stride of 2. The model recommends 
4x4 filters, however this parameter was changed to 6x6 in order to detect more extensive spatial features. Regarding 
the decoder in its last layer, a convolution layer must be made to match the pathways of color, in this case there are 
3. Finally, a layer with an activation function of Hyperbolic tangent was added. The BatchNorm application was 
applied as an exception in the first C64 layer of the encoder.

Evaluation metrics
An approach based on pixel comparison was used to evaluate the images segmented by the Pix2Pix model and the 

real segmented images. These metrics provide a holistic understanding of model performance to segment both 
nuclei and cytoplasm.

FIGURE 2. Generator and discriminator architecture for segmentation of cervical intraepithelial nuclei. (a) Generator 
architecture. Encoder, decoder and the skip connections. (b) Discriminator Architecture.
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 PPrreeddiicctteedd  ppoossiittiivvee  PPrreeddiicctteedd  nneeggaattiivvee  
Actual Positive TP FN 

Actual Negative FP TN 
 

TABLE  2. Multiple confusion matrix.
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Where TP (True Positive) are the correctly segmented pixels as nuclei or cytoplasm, FP (False Positive) are the 
pixels erroneously segmented as nuclei or cytoplasm, FN (False Negative) are the pixels that were not segmented 
but should have been, and TN (True Negative) are the pixels that represent the pixels correctly identified as not 
belonging to the region of interest, this is best shown in Table 2.

From the data in the multiple confusion table, 5 important parameters can be calculated[26][27].

Sensitivity: this measure indicates the percentage of the cases that the model identify as positive actually are, as 
defined in Equation (6).
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𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹  

 

(6)

(7)

(8)

(9)

(10)

Specificity: measures the model’s ability to correctly identify negative cases. It is complementary to specificity and 
is essential in situations where correct identification of negatives is critical, as presented in Equation (7).
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𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇  

 

Accuracy: it measures the overall correctness of the model. It is the proportion of correctly classified instances (TP 
and TN) out of the total number of instances, as can be seen in Equation (8).
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𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑇𝑇  

 

Precision: Accuracy focuses on how many of the predicted positive results were actually correctly identified. It is 
critical when false positives need to be minimized, as shown in Equation (9).
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃  

 

Jaccard index (IoU): is a spatial metric used in image segmentation. It calculates the overlap between predicted and 
actual areas of interest, as observed in Equation (10).
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𝐼𝐼𝐼𝐼𝐼𝐼 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝐹𝐹  

 

Finally, statistical measures such as mean and standard deviation are calculated for the results obtained from the 
evaluation metrics during the experiments. These measures allow for a more precise visualization of both the vari-
ability and consistency of the model's performance, thereby providing a robust measure of its effectiveness and 
capability.
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Experimentation and results
The experimental workflow was structured into several key stages to ensure accurate segmentation of nuclei and 

cytoplasms, as well as their evaluation in Pap smear images, using the Pix2Pix neural network. The experimentation 
in this study focused on segmenting and automatically evaluating nuclei and cytoplasms in the images.

Data and implementation details
The dataset used contains information on the position of cell edges for each category, which were manually seg-

mented by a professional. This manual process is crucial as it allows for the automatic generation of target images 
that not only accurately reflect the morphological characteristics of the cells from each category, but also ensure the 
representativeness and authenticity of the target image. The manual segmentation performed by an expert pro-
vided accurate boundary information.

From the original images, with a resolution of 2048x1536, the cores were cropped into images with a size of 
256x256. With the same proportion of the coordinated segmentation dataset, images were created with the seg-
mented cells in which the nucleus was assigned a color in the RGB format: blue (R:0, G:0, B:255), the cytoplasm in 
red (R:255, G:0, B:0) and finally the background white (R:255, G:255, B:255). In the same way, both the cytoplasm 
and the nucleus were joined by a black border (R:0, G:0, B:0). This can be seen in detail in Figure 3. Cells that were 
close to the edge were discarded, as information would be lost and/or could not be adjusted to the required size of 
256x256. Of the total, 4049, single cell images available, only 3989 were used, with the Superficial/Intermediate, 
Parabasal, Koilocytotic, Metaplastic and Dyskeratotic categories.

The dataset was divided into two categories; 70 % of the images cropped from each of the categories of the dataset 
were taken for training. These images were taken randomly, in the same way the remaining 30 % were assigned for 
testing the Pix2Pix model, leaving a total of 2,792 for training and 1,197 for testing.

Model training
Having the architecture as described in the previous section, it proceeded to train the model with a total of 200 

epochs and the test images of the SIPaKMeD dataset. This number of epochs was selected based on recommenda-
tions observed in state-of-the-art studies, where it has been demonstrated to achieve optimal balance between 
training convergence and overfitting[23]. The Pix2Pix model needs both a reference image x and a target image y. 
These references are used to learn the relationship between the corresponding input and output image in a training 
dataset. That is why a target dataset Z was created after the original dataset, which represents the segmentation of 
the nuclei of each of the cells, as illustrated in Figure 3.

Data augmentation was carried out by using techniques that allow obtaining a greater representation of the infor-
mation (images). Arbitrary changes of image rotation, horizontal and vertical flipping, zoom-in and zoom-out were 
implemented for variations in scale and random cuts in the image to show different parts. This technique, known 
as Jitter, allows the algorithm to have diverse information from a single image.
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FIGURE 3. Image Samples and their output target

Evaluation for generated images
Once the model training was completed, it was used to generate segmentation maps for the validation set, which 

corresponds to 30 % of the images. Regarding the evaluation of the model, quantitative and qualitative evaluation 
was carried out; the first consists of superimposing the segmented images onto the images produced by the model, 
counting the number of pixels of the color assigned to the nucleus, cytoplasm and background; ignoring the com-
ponents, the three-color pathways, that are foreign to the object. In the same way, a threshold of 200 was applied 
on the colors corresponding to the classifications because the algorithm does not always assign the exact corre-
sponding color to the pixel, varying slightly. This threshold was chosen after visual inspection of the images gener-
ated by the model and based on empirical observations, as it provided the best balance between including relevant 
pixels within the area of interest and excluding background noise or irrelevant variations, e.g. material not belong-
ing to the area of interest. Furthermore, this threshold ensures that subtle variations in pixel intensity, inherent to 
the generative process, do not compromise the integrity of the segmentation process. This allows to have the most 
information about the area of interest, discarding areas with non-uniform colors or with a low percentage of target 
color.

The color images generated by the model were converted to a binary domain, both the nucleus and the cytoplasm 
part, in order to perform a logical AND operation between all the pixels and making a sum of the number of pixels 
that were correctly segmented with respect to their class. As represented in Figure 4, the pixels outside the object's 
area were calculated in the same way, this will give the percentage of segmentation error of the nucleus and cyto-
plasm and its false positives.

FIGURE 4. Quantitative evaluation of the generated image.
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The metrics were calculated for each of the generated images, obtaining a set of data that measures central ten-
dency as mean. As for the qualitative evaluation, the quality of the generated image is carried out. This may give 
indications if it is necessary to implement other algorithms in the future so that the segmented objects have a qual-
ity that allows obtaining morphological data and texture statistical data, among others. 

RESULTS AND DISCUSSION

      In this study, the Pix2Pix model is evaluated for the segmentation of nuclei and cytoplasm of cells in Papanicolaou 
test images. Evaluation metrics such as accuracy, precision, sensitivity, specificity, and Jaccard index were used to 
assess the model. The results of these metrics for both nucleus and cytoplasm are shown in more detail in Table 3.Revista Mexicana de Ingeniería Biomédica 

 
MMeettrriicc  NNuucclleeii  mmeeaann  CCyyttooppllaassmm  mmeeaann  

Accuracy 93.99 %   96.93 % 
Precision 88.80 % 97.33 % 

Sensitivity 89.62 %  99.34 % 
Specificity 91.32 % 67.03 % 

Jaccard Index IoU) 80.89 %  96.71 % 
 

TABLE  3. Mean results for evaluation metrics.

Regarding the segmentation of nuclei, the model achieved an accuracy of 93.99 %, a precision of 88.80 %, and a 
sensitivity of 89.62 %. These values demonstrate optimal performance in identifying and segmenting this area. 
Concerning the ability to distinguish between the background and the nucleus, the specificity reached 91.32 %, 
which is significant as it greatly reduces the false positive rate. The Jaccard index was 80.99 %, which quantifies the 
overlap between the predicted and true nucleus, indicating a satisfactory degree of overlap between the two areas.

On the other hand, for the cytoplasmic area, the Pix2Pix model achieved an accuracy of 96.93 %, a precision of 
97.33 %, and a high sensitivity of 99.34 %. These results suggest that the model is highly capable of detecting cyto-
plasmic areas. However, the model performed significantly lower in terms of specificity compared to the other indi-
cators, with a value of 67.03 %, this implies a significant rate of false positives. Although specificity was low, the 
Jaccard index reached 96.71 %, indicating substantial overlap between the predicted and true cytoplasmic areas.

Visual and quantitative comparisons can be observed in Figure 5. The edges of the images predicted by the model 
are on the original image overlapping, next to its target and below these figures, the evaluation metrics for each 
example. It is important to note visually that the edges coincide in a significant percentage with the original images, 
which is of utmost importance to avoid false positives when performing evaluations to determine the level of neo-
plasia in the samples.
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The results obtained and shown in Table 3 indicate that, although the model performs well in detecting and seg-
menting areas of interest, there is a noticeable difference in specificity in the cytoplasmic area. This may be due to 
the complexity of these areas, taking into account whether the sample was carried out correctly, the overlapping of 
cells, or the level of neoplasia, as in certain stages of CIN, the cells tend to group and overlap. In Table 4 is shown the 
standard deviations of evaluation metrics, the model demonstrates more consistent segmentation performance for 
the cytoplasm across all metrics. In contrast, the higher variability in nucleus-related metrics highlights a need for 
further refinement, especially in sensitivity and Jaccard Index, to achieve more stable segmentation for this region. 
This could lead to further studies aimed at addressing this specific issue, incorporating preprocessing to highlight 
the cytoplasmic edges or training with more diverse data.

FIGURE 5. Comparison with test image, in left-to-right order: the input image with predicted image edge and target. The 
evaluation metrics are shown below each image and the category above the figures.
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TABLE  4. Standard deviation results for evaluation metrics.

Revista Mexicana de Ingeniería Biomédica 

 
MMeettrriicc  SSttdd..  DDeevv..  NNuucclleeuuss  SSttdd..  DDeevv..  CCyyttooppllaassmm  

Accuracy 5.12 % 3.17 % 
Precision 10.68 % 3.20 % 

Sensitivity 13.22 %  0.80 % 
Specificity 11.64 % 12.01 % 

Jaccard Index IoU) 15.89 %  3.33 % 
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MMeetthhoodd  
NNuucclleeuuss  aanndd  CCyyttooppllaassmm  

AAccccuurraaccyy  PPrreecciissiioonn  SSeennssiittiivviittyy  SSppeecciiffiicciittyy  JJaaccccaarrdd  IInnddeexx  IIooUU))  

K-means [28] - - - - 0,72 

Mean-shift  - - 0,94 0,93 - 

CNN [29] - 0,73 0,65 0,73 - 

Bi-Path[30] 0,77 - 0,72 0,71 - 

PPiixx22PPiixx  [23]  0,95 00,,9933  0,94 0,79 00,,8899  

Superpixcel and CNN 
[31] - - 0,87 0,91  

U-Net Model [32] - - 00,,9955  0,75 0,63 

Otsu [33] - - 0,89 0,43 0,52 

Star-Convex Polygons 
[34] - 0,89 - - - 

ConvNet [35] 00,,9988  - - 00,,9988  - 

Ensemble 
of(Superpixel, FCN8, 

FCN16) using STAPLE) 
[36] 

0,87 - 0,66 0,96 0,53 

EfficientNet combined 
with FPN [37] - 0,91 0,91 0,95 0,84 

 

TABLE  5. Segmentation techniques performance comparison.

Table 5 compares the performance of different methods and models for the segmentation of nuclei and cytoplasm, 
using the evaluation metrics considered in this study. Pix2Pix stands out as one of the best-performing methods. 
The ConvNet model achieves the highest precision and specificity, with values of 0.98. On the other hand, U-Net 
and EfficientNet demonstrate excellent sensitivity, reaching 0.95 and 0.91, respectively. In contrast, Superpixel + 
FCN approaches show a specificity of 0.96 but fall short in sensitivity and Jaccard Index. Compared to other meth-
ods in the table, the precision and IoU of the Pix2Pix model yield optimal results. Lastly, the review [38] presents 
several methods for the segmentation and classification of Pap Smear images. While these models and algorithms 
are effective, the evaluation metrics used differ from those employed in this study.

CONCLUSIONS

The high precision and sensitivity are a good indication that the Pix2Pix model is capable of segmenting both nuclei 
and cytoplasm. The standard deviation of Sensitivity and Accuracy were low with values of 0.1068 and 0.1322 
respectively, this could indicate that the model has a homogeneous performance when identifying cell nuclei. 
Similarly, the low standard deviation values for Sensitivity and Accuracy in terms of cytoplasm were 0.032 and 
0.008, respectively.

The model was trained with images containing the original resolution. The training with the original resolution 
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took too long to complete, with a high computational cost. This resulted in low resolution output by the model, 
rendering the images to not correspond to the objective. In addition, it should be noted that the dataset used does 
not have the information of all the existing cells in the image. This generated a low adjustment, since incomplete 
information was entered. In other words, cells that should be segmented did not enter in that way.

The Pix2Pix model demonstrates balanced performance across all metrics, making it a solid choice for segmenting 
nuclei and cytoplasm. While models such as ConvNet achieve slightly higher accuracy and specificity, Pix2Pix excels 
in sensitivity and Jaccard index, which are critical for accurate segmentation tasks. This positions Pix2Pix as an 
effective and reliable method for applications requiring accurate and consistent segmentation in biomedical images.

The output images will be used in future work, which will obtain image characteristics such as morphological, tex-
ture, color, among others. The analysis with advanced detailed machine learning techniques will lead to evaluating 
and identifying in a concise manner the different levels of CIN that the images could present. This analysis will 
represent a more precise support for the present work and will contribute to the research and development of more 
precise and sophisticated diagnostic tools. In this same way, other existing architectures in the literature could be 
explored and comparisons made between them.

This model could be implemented in cloud applications or systems for CAD in remote or hard-to-reach locations, 
in this way images taken by specialized technicians in this area could be automatically processed and data analysis 
performed. This data can be saved and accessed anywhere by medical specialists in order to offer an effective, 
prompt and accurate diagnosis.

Within the limitations of the SIPaKMeD dataset is that not all the cells present in the images are segmented as 
individual cell images, which means there is no information about their location. This can result in incomplete data 
during the training phase, especially if one or more cells are not identified by specialists. Therefore, it is crucial to 
consider this limitation in future applications of models such as Pix2Pix.

In summary, the Pix2Pix Conditional Adversarial Generative Neural Network model is a powerful tool for segmen-
tation of cell nuclei and cytoplasm in Pap smear images. This model leverages the power of deep learning to distin-
guish complex cells with high accuracy, enabling detailed analysis of cellular anomalies.
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