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ABSTRACT 
Brain-computer interfaces (BCIs) are technology in development that attempt to establish interaction between indi-
viduals and their surroundings by modulating their neural activity. One of the most common strategies to modulate 
neural activity is motor imagery (MI). However, research on MI-based BCIs has been mostly carried out on the sys-
tem-related part, whereas the user-related part has been relatively ignored. Thus far, up to 30% of users cannot gain 
control of BCI, while the remaining ones reach modest performance. The exclusion of users in the system design 
has possibly led to this outcome. Therefore, the aim of this paper is to establish a mixed method based on interac-
tive design principles and in line with (1) user-profile, (2) psychological and (3) neurophysiological factors, (4) BCI 
technical issues and (5) user-experience.  Although some of these elements have been previously discussed, their 
integration and application are seldom considered during investigation. 
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RESUMEN
Las interfaces cerebro-computadora (ICC) son tecnología en desarrollo que intenta establecer interacción entre un 
individuo y su entorno a través de la modulación de su actividad neuronal. Una de las estrategias más usadas para 
modular la actividad neuronal ha sido la imaginación motora. Sin embargo, la investigación en ICC controladas por 
imaginación motora ha sido desarrollada mayoritariamente en términos del sistema, donde el usuario es general-
mente ignorado. A la fecha, hasta el 30% de los usuarios no pueden controlar un sistema ICC basado en imaginación 
motora, mientras que el resto de los usuarios alcanzan un desempeño moderado. La exclusión de los usuarios en el 
diseño del sistema, posiblemente ha llevado al bajo índice de adaptación entre el sistema y el usuario. En base a esta 
evidencia, el objetivo de este artículo es establecer un método mixto sustentado en principios de diseño interactivo 
y considerando cinco elementos: (1) perfil del usuario, (2) factores psicológicos y (3) neurofisiológicos, (4) factores 
técnicos y (5) experiencia del usuario. Aunque todos estos elementos han sido discutidos previamente, su integra-
ción y aplicación son muy poco frecuentes durante la investigación.     

PALABRAS CLAVE: Interfaces Cerebro-Computador; Factores Neurofisiológicos; Experiencia del Usuario; Perfil del Usuario
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INTRODUCTION
A brain-computer interface (BCI) is a system that 

attempts to establish interaction between individuals 
and their surroundings by translating brain signals 
into control commands. Brain signals are modulated 
by control tasks, which can be of two types: endoge-
nous and exogenous. Endogenous control tasks refer 
to mental rehearsal such as imagination of specific 
movements without actual execution (i.e., motor 
imagery) or mental rotation of 3D objects. On the other 
hand, exogenous ones regard the focus of attention 
towards visual, auditory or haptic stimuli [1]. 

One of the most commonly used control task has 
been motor imagery (MI) due to the natural way to 
perform the task and the sense of agency [2]. Research 
on MI based BCIs has been mostly carried out on the 
system-related part. However, the user-related part 
has been relatively ignored. Thus far, a considerable 
portion of naïve users have been classified as low apti-
tude users because they do not achieve adequate sys-
tem performance (i.e., detection of at least 70% of 
neural patterns associated with MI). According to [3, 4], 
researchers in the field have reported portions of low 
aptitude naïve users from 40% to 60% of their sample 
in use. Similarly, it was argued in [2] that between 15% 
and 30% of naïve users could not control BCI at all, 
whereas the remaining users only reached modest 
performance. It is also important to note that perfor-
mance variation is not only present across different 
users, but also the same user can present high perfor-
mance variations [5, 6]. The exclusion of users in the 
system design has possibly led to this outcome.

The system design in terms of the user, rather than in 
terms of the system per se, is well-known as interaction 
design [7]. In the light of aforementioned evidence, it 
seems plausible that BCI community has been failing 
in developing interactive designs of MI based BCIs. 
Therefore, the present paper aims to offer some import-
ant insights into interactive design of MI based BCIs by 

raising three fundamental questions: (1) who is going 
to use the system? (2) how is the system going to be 
operated? and (3) where is the system going to be used?

The first question concerns the user. So far, users 
have been seen as entities with no history. However, 
every individual has different anatomy, body func-
tioning, lifestyles, habits, skills, and interests.  It has 
been shown that all of these factors (and many others) 
determine the nature of the brain activity, and the fea-
sibility of being modulated through MI [2]. As a result, 
the first step towards prototyping interactive designs 
must be to build up user-profiles.

The second question relates to the control tasks. In MI 
based BCIs, the term “control task” refers to generate 
motor mental images that could produce distinguish-
able brain patters over the scalp. MI related control 
tasks are a skill that must be acquired by training, and 
which also depends on the user-profile. Furthermore, 
imaginary movements are predicted and produced in 
line with motor repertoires inherited at birth and built 
along lifetime [8]. Thus, psychological and neurophysio-
logical factors of MI-related control tasks must be con-
sidered as well.

The third question is associated with the context, 
which can be physical, social, and organizational [9]. 
Physical context may limit the number of tasks under-
taken at a time due to environmental distractors, and it 
could also push users to explore different ways to solve 
the same problem at different times. Social context can 
determine user guidance, and even the acceptability of 
certain designs. Organizational context is associated 
with the availability of easy-to-access and easy-to-di-
gest information. All these factors strongly influence 
the user performance, but such influence might be 
quantifiable, once a prototype had been tested by 
end-users in real working conditions [10]. Consequently, 
user-experience (UX) must be obtained to redesign MI 
based BCIs in line with end-user requirements.
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In the light of the above discussion, the aim of this 
paper is to establish the initial steps towards new 
methods for designing easy-to-learn, effective-to-use 
and enjoyable MI based BCIs on the basis of (1) 
user-profiles, (2) psychological and neurophysiologi-
cal factors associated with MI control tasks, and (3) UX 
so as to improve individual user performances, and 
increase the number of qualified users.

MIXED METHOD FOR BCIs
BCI community has been always surrounded with 

hopes and expectations of providing a reliable way of 
communication between the human brain and a com-
puter system. This research field has been getting 
more robust in important areas ranging from pattern 
recognition to electrode (transducer to record non-in-
vasively electrical body activity) and material improve-
ments, along with human-computer interaction tech-
niques. However, methodologies are often skipped or 
dimly presented in the state-of-the-art publications 
[11], leading to a great difficulty or impossibility of rep-
licating experiments in this area. The purpose of this 
paper is to propose a mixed methodological procedure 
in line with user-profiles, neuro-evaluations (both 
psychological and physiological), and UX. The step-by-
step proposed method is depicted in Figure 1. As can 
be seen from the figure, the method involves 12 steps, 

FIGURE 1. Methodological workflow to design MI based BCIs in line with user-profile, psychological factors, 
neurophysiological evaluation, and UX undergone throughout the brain-computer communication.

which are encompassed under five stages: (1) user-pro-
file, (2) psychological and (3) neurophysiological eval-
uation, (4) technical issues in BCI and (5) UX.

User-profile
As can be seen, life history, life style, and living con-

ditions of users affect MI based BCI performance, and 
from here, the relevance of create user-profiles. A user- 
profile can be helpful to define the system structure to 
exploit user strengths, and overcome user weaknesses. 
It is proposed to build up user-profiles according to 
health information, lifestyle, and handedness.

Health information and lifestyle
Health information and lifestyle can reveal the facil-

ity or difficulty of users to produce specific imaginary 
movements at the time of controlling a MI based BCI 
[12, 13]. By way of illustration, an online questionnaire 
concerning physical and medical condition, sleeping 
and nutrition habits, alcohol consumption, smoking 
habits, and hormonal conditions has been attached to 
this paper i. In addition, vital signs, including body 
temperature, breathing frequency, blood pressure and 
heart rate should be registered. Particularly, heart rate 
is very relevant to adjust the frequency band of senso-
rimotor rhythms (brain patterns related to MI) accord-
ing to the neurobiology aspects of the user. It is com-
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mon practice to make use of the pre-defined frequency 
bands. However, it is well-established that neural 
oscillations change over lifecycle. By using heart rate 
and applying the brain-body coupling theory can be 
estimated neural resonance rhythms of each user [14].

Handedness
Imaginary movements stimulate the same neurocog-

nitive and learning processes as actual ones. Thus, it is 
expected the relevance of the dominant hand of BCI 
users. In [15], this point is clearly illustrated. Researchers 
found that MI practice with the dominant hand resulted 
in larger and more robust improvements in movement 
speed comparted with MI practice with the non-domi-
nant one. As it is very relevant to determine participant 
handedness, standard handedness evaluationii related 
to hand preference to carry out daily tasks such as writ-
ing, drawing, throwing, striking a match, opening a 
box, eating, toothbrushes, brooms, and scissoring are 
necessary. This test is based on [16]. Once the test has 
been completed, a laterality index is obtained which 
determines the percentile of handedness for the partic-
ipant. By identifying the dominant hand, a well-cho-
sen selection of control tasks for brain-computer inter-
facing may be offered at the prototype stage. 

Psychological factors
To date, the psychological factors associated with MI 

tasks have been (1) perception of an imagination task, 
(2) visual-motor coordination, (3) level of attention, (4) 
spatial abilities, (5) intelligence, (4) personality traits, 
(5) psychological well-being, (6) motivation, and (7) 
mood [17]. All these factors may be encompassed under 
two categories: MI process and motivation. On the one 
hand, the imagination strategy to elicit motor mental 
images and the level of difficulty of the motor task 
(e.g., duration, velocity, complexity) are factors that 
affect whether users achieve to control their brain 
activity through MI control tasks [18, 3]. On the other 
hand, the level of user engagement at the moment of 
the brain-computer communication has always been 

critical. Motivation is a very complex factor that cannot 
be only influenced by entertainment and excitement 
as has been done via virtual environments, but it can 
also be modified via fatigue and frustration [19].

On this evidence, objective (e.g., psychophysiological 
monitoring) and subjective (e.g., questionnaires) eval-
uations of the user mental state along the experimen-
tal procedures should be obligatory. For instance, sev-
eral MI questionnaires have been provided to measure 
movement imaginary abilities. There is no certainty 
about MI existence since it exclusively depends on the 
user intentions, and he/she is the only one who knows 
what and how is happening internally. Therefore, a 
way to give an insight into user mental projections is 
to evaluate movement imagery ability by means of 
official questionnairesiii [20, 21, 22]. Note that these ques-
tionnaires have been also used as a simple method to 
detect BCI illiteracy in MI based BCIs [23]. Unfortunately, 
it is still occasional to see that researchers in the field 
do not report to have made use of them. Furthermore, 
not only the use, but also the analysis of the question-
naire outcomes should be obligatory.

Neurophysiological factors
As it has been herein discussed, MI is an individual 

capacity to image movements and a skill that needs to 
be acquired. Brain-computer communication depends 
on the fertility of imaginary movements selected as 
control tasks, since the voluntary control of brain 
activity is achieved by the effectiveness of MI mecha-
nisms employed by the user. Similar to other authors, 
it is herein considered that brain-computer communi-
cation will breakdown, even applying the most sophis-
ticated computational algorithms, if user is unable to 
show great motor imagination.

Hitherto, it has been commented about personal 
attributes and psychological factors that determine 
the nature of MI. However, the genetic influence and 
the evolution of brain activity along the life-cycle 
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could be even more determinant. A notable example is 
the theory proposed by Klimesch, who suggested that 
brain-body interactions can be described as a complex 
system that couples and decouples on the basis of a 
specific harmonic frequency: heart rate  [14]. This the-
ory establishes that heart rate, which is known to vary 
with body size, age, and sex, is the basic frequency and 
the scaling factor for all other frequency domains: (1) 
brainstem oscillations that trigger inhaling and exhal-
ing, (2) breathing frequency, and (3) brain oscillations. 
The work of Klimesch confirms that brain oscillations 
are determined by basic biological factors; and more-
over, that they can be adjusted according to the indi-
vidual heart rate. In a similar case, brain oscillations in 
alpha and beta bands over the sensorimotor cortex at 
resting state have been used to anticipate the user per-
formance in MI based BCIs [24]. In the same line of 
thinking, brain oscillations in high theta, low alpha, 
and gamma frequency bands have been also proposed 
as neurophysiological predictors of MI suitability as 
control task [3, 25]. Besides, brain activity has not only 
been used to characterize individuals as potential BCI 
users, but the electrophysiological activity of nervous 
system has also been subject of study. As a case in 
point, MI ability through electro-dermal activity was 
assessed in [26]. As it can be seen, abundant and strong 
neurophysiological evidence has been accumulated to 
show that feasibility and reliability of interactive sys-
tems such as BCIs depend on biological and physiolog-
ical aspects of users. Additionally, all this information 
must be utilized (1) to estimate neural features used to 
detect MI related control tasks, (2) to evaluate new 
training protocols, (3) to quantify the learning level of 
user, and (4) to assess new multi-sensorial feedback 
strategies such as tactile stimulation.

Vital signs and harmonic index
In the light of the above discussion, vital signs, 

including body temperature, breathing frequency, 
blood pressure and heart rate should be registered, 
before an BCI experimental procedure. Particularly, 

heart rate is very relevant to adjust the frequency band 
of sensorimotor rhythms according to the neurobiol-
ogy aspects of the user. It is common practice to make 
use of the pre-defined frequency bands. However, it is 
well-established now that brain oscillations change 
over life-cycle, and the brain-body coupling theory can 
help to localize “real” neural resonance of each user [14].

Neurophysiological predictor
In addition to vital signs, recording of brain activity at 

rest before a BCI experimental procedure should be also 
considered. Some parameters that can be determined 
by using this recording are individual alpha frequency 
and the neurophysiological predictor index to catego-
rize users with low or high MI aptitudes. As it was afore-
mentioned, such user categorization can be helpful to 
test the effectiveness of new training protocols or new 
feedback strategies. To obtain the individual alpha fre-
quency, it can be employed the method proposed in [27], 
where two three-minute-long recordings in eyes-closed 
and eyes-open conditions are necessary. Individual 
alpha frequency is specifically obtained from two occip-
ital recording sites over the scalp. To estimate the neu-
rophysiological predictor index, the method proposed 
in [28] has demonstrated to be one of the most effective. 
The method requires a two-minute-long recording in 
eyes-closed condition. The general procedure consists 
in calculating the power spectral density of two central 
recording sites over the scalp [24]. Implementations can 
be found in public sites such as GitHub [29].

BCI: Technical issues
The discussion of BCI design is beyond the scope of 

this paper. However, there are some critical technical 
issues that are often ignored, and determinant to 
establish brain-computer communication. 

Electrode montage
The commonly used method to record brain activity is 

Electroencephalography (EEG). An EEG signal is typi-
cally measured between two electrodes, and one of 
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them is used as referencing point. However, it is fre-
quently overlooked the sensitiveness of the referencing 
electrode to the electrical brain activity. It is common 
practice to place the referencing electrode on a hypo-
thetically “inactive” area of the scalp, or on another 
part of the body such as the left or right earlobe, or 
thereof. When a particular lobe is chosen as a reference, 
the EEG amplitude decreases on the electrodes that are 
close to the referencing electrode. When linked ear-
lobes is chosen, the asymmetry effect of using one lobe 
referencing electrode is avoided. However, the link 
wire between two earlobe referencing electrodes 
affects intracranial currents that produce the EEG 
potentials. This inconvenient effect also produces a 
distortion on the EEG recording [30, 31, 32, 33].  The refer-
encing issue on EEG has been analyzed by the BCI com-
munity. A case in point, the estimation of the optimal 
location of the referencing electrode for MI based BCI 
using functional magnetic resonance imaging was pro-
posed in [34]. In such method, a proper referencing point 
was estimated to maximize the differentiation between 
two mental tasks: imagination of left and right finger 
movements. Authors found that the best reference to 
discriminate two MI related tasks was FCz, a recording 
site localized on the supplementary motor area.

The electrode montage determines the spatial filter-
ing of the EEG signals, which in turn maximizes the 
neuro-mechanisms of interest. This is why the selec-
tion of an optimal electrode montage, along with exact 
electrode location, is significant. On the one hand, 
electrode positioning must be in line with an imagi-
nary transversal line drawn from nasion to inion, and 
an imaginary longitudinal line drawn from left to right 
pre-auricular points. The crossing point of these two 
imaginary lines should be the recording site Cz (Figure 
2 – top section). On the other hand, if the detection of 
alpha and beta rhythms over the sensorimotor cortex 
(those that reflect MI activity) is of interest, the typical 
recording sites are C3, Cz and C4, in conjunction with 
their neighboring sites (Figure 2 -  bottom section).

FIGURE 2. EEG and EOG electrode montage: procedure and 
location. EEG are mounted over the sensory-motor cortex 
to record C3, Cz and C4, along their neighboring recording 

sites to spatially filter by small Laplacian method.

Removal of EOG artefacts
Electrical activity proceeding from eye movements 

and blinking (i.e., electrooculography (EOG)) are one 
of the main interference sources during EEG record-
ing. As a result, it is very important to adopt a method 
to minimize EOG effects. A practical and optimal 
method to detect and remove EOG artifacts in online 
mode was proposed in [35]. The EOG montage is based 
on three recording sites (Figure 2 – bottom section) 
and a three-minutes-long recording. Over the first two 
minutes, participants should be asked to follow with 
their sight an object covering as much sight space 
clockwise for the first minute, and counter-clockwise 
for the second one. Over the third minute, participants 
should be asked to blink continuously.

Calibration and online communication
As it is well-established, a minimum of 40 trials per 

control task in use is necessary to calibrate a MI based 
BCI. Once the system has been calibrated, brain-com-
puter communication can be initiated. During BCI 
experiments, it is very important to keep in mind that 
volunteers need to take comfortable positions, to 
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drink some water or eat some snack, to stand up and 
move around, or even to be on the phone from time to 
time. Relaxation periods are essential for any experi-
mental protocol since human beings have limited 
mental resources [36].

User-Experience (UX)
In addition to the individual characteristics of users, 

their perspective about the BCI system should be stud-
ied as well [37]. Precisely, the term “user-experience” 
was introduced to define a person perceptions and 
responses that result from the use of a system. 
According to human-centered design processes for 
interactive systems (ISO 9241-210), UX includes the 
emotions, beliefs, preferences, perceptions, physical 
and physiological responses, behaviors and accom-
plishments of the user before, during, and after the 
interaction with the system. UX evaluation might 
allow to redesign BCI prototypes in terms of user 
necessities and desires. An alternative can be the offi-
cial UX questionnaire. The purpose of UX question-
naire is to evaluate aesthetic attractiveness, level of 
task understanding, predictability, levels of innova-
tion, creativity and excitement. This source of informa-
tion can be used to improve user-system interaction in 
BCIs. In [38], it is suggested that the distribution of UX 
questionnaires in BCI studies has increased user accep-
tance, user enjoyment, and human-computer interac-
tion. This evaluation could lead to increase the interac-
tion quality between the user and the BCI system [39, 40].

DISCUSSION
A distinctive characteristic of BCI community during 

the system-part development has been the transpar-
ent and openness of the computational algorithms, 
what has led to the standardization of data processing 
pipelines. So far, a wide variety of open-source soft-
ware has been released. The best known and exten-
sively used packages include BCI2000 [41], BCILAB [42], 
BioSig [43], FieldTrip toolbox [44], OpenViBE [45], and 
EEGLAB [46]. In order to continue fostering the commu-

nication practices [47], it is proposed a step-by-step 
methodology towards the interactive prototyping of 
MI-based BCIs. According to Figure 1, the methodol-
ogy involves 13 steps, which are encompassed under 
five stages: user-profile, psychological and neurophys-
iological assessment, brain-computer communication, 
and UX evaluation. See Figure 1.

Towards designing BCIs in terms of user-profiles, 
neurophysiological factors and UX, the first step that a 
BCI research team must take in order to create a new 
interaction paradigm relies exclusively on getting to 
know the user. This means to actually reach for the 
user by considering demographic factors, socioeco-
nomic position, familiarity with technology products, 
occupation, devices and products which are constantly 
in contact with the user among many other factors 
that are often trivialized. User and his/her context rep-
resent a mine of information which can be used to take 
advantage of elements that could result familiar to 
them for designing a system which can merge easily 
with reality. The second step is to consider expecta-
tions from the user, which derive from the context. 
Questions such as (1) Has the user used a computer 
before? (2) Does the user perform long concentration 
tasks? If yes, (3) how does the user feel about that? (4) 
What are the concepts that come to the user mind 
when BCIs are mentioned to him? and (5) How much 
time does he/she think that he/she can maintain focus 
on repeating modulation tasks? must be answered 
before any line is drawn or any code is typed. The com-
munity must reject the idea of adapting the users to 
what is already there if a better performance wanted to 
be reached. The third and last step refers to the design 
and development the BCI system and an appropriate 
working environment. For that purpose, it must be 
considered that imaginary movements are predicted 
in line with motor repertoires built along lifetime, and 
sensory predictions made through context scanning 
(similar to actual movements). Therefore, a favorable 
and familiar system and working environment that 
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provide at a first glance the sufficient sensory infor-
mation about which imaginary movements are needed 
to interact with such environment must be created. 
Thereafter, it is necessary to identify the imaginary 
movements in line with the nature of the working 
environment so as to modify that environment as if 
imaginary movements were being actually executed. 
This achieves consistency between what is imagined 
and how that mental image is effectuated. Frequently, 
the set of imaginary movements that user performs to 
establish brain-machine communication is not 
strongly related to the control panel of the system. The 
consistency between imaginary movements and con-
trol mechanisms is referred to as transparent map-
ping.  Finally, sensory feedback to obtain perceptual 
information about the environmental changes effected 
by the MI activity in use must be provided.

Prototyping interactive MI based BCIs in terms of 
user-profiles, psychological and neurophysiological 
factors, and UX can lead to the early involvement of 
end-users, and the appropriate contextualization of 
the final applicability of the system. At early stages of 
MI based BCI prototyping, this design strategy identi-
fies and involves day-to-day activities, employment of 
existing technology, emotions, and expectations of 
end-users. Thereby, questions such as (1) What are the 
simplest and most routine tasks of users at the time of 
interacting with present-day technology? (2) How can 
those tasks be mapped into MI related control tasks? 
(3) Do users feel comfortable at using this kind of tech-
nological platforms? (4) What are the user expecta-
tions about the system performance? or (5) Would 
users make use of BCI based technology for their activ-
ities of daily living? could be answered. Based on that 
documentation, more feasible prototypes may result.

Interaction design of MI based BCIs challenges tradi-
tional paradigms since it attempts to restructure the 
system functionality by making users the central part 
of the system. This empathy-driven approach has 

shown to provide a better UX, which in turn dimin-
ishes frustration and increases involvement. 
Interaction design does not pretend to discard or 
demerit previous efforts, but to move towards natural 
and intuitive user-system interactions. This design 
technique may help users to imagine specific move-
ments in specific contexts, facilitating the detection 
to brain patterns associated with the control tasks in 
use [48, 49, 50, 51, 52]. In the traditional paradigms, it is 
common practice to map arbitrarily imaginary move-
ments of (1) mouth, (2) foot, (3) left hand, and (3) 
right hand to the control commands (1) move for-
ward, (2) move backward, (3) turn left, and (4) turn 
right, regardless of the particular BCI application. 
Namely, what user thinks is not what system effectu-
ates. This inconsistent control mapping causes confu-
sion, and hinders the user-system adaptation, since 
not only MI skill acquisition is necessary, but also the 
correlation between mental rehearsal and control 
panel [53, 54, 55]. Interaction design allows to conceptual-
ize and contextualize opinions, emotions, and expec-
tations of end-users. The preliminary results pre-
sented in [50] and [54], along with the critiques provided 
[48], are the theoretical framework of this proposal, 
and demonstrate the relevance of interaction design 
of MI based BCIs.

Regardless of the benefits of interaction design in MI 
based BCI prototype, there are some sources of weak-
ness in the approach. Firstly, this practice is rarely 
implemented by the BCI community since it takes 
time and demands resources. Secondly, the appropri-
ate implementation of interactive methodologies 
strongly determines the system performance. Thirdly, 
there is no a conventional methodology yet. Moreover, 
methodological standardization could be complicated 
since interaction design hinges on the application of 
the system. Interaction design is a heuristic approach 
since every person is different, and then, the proto-
type cannot be considered neither universally func-
tional or accepted.
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CONCLUSION
The interest on MI based BCIs has been growing expo-

nentially. Although the idea of direct brain-computer 
communication is very attractive stand alone, BCIs as a 
tool in Neurosciences to investigate sensorimotor 
transformations of the nervous system has magnified 
BCI research. Of particular interest is the neural mech-
anism behind the motor system, because movement is 
the only way human beings have for interacting with 
the world. When this system is malfunctioning, people 
eventually or suddenly lose their autonomy, what leads 
to overcome several socio-economical pitfalls. Only in 
Mexico, around 15.9 million people have some kind of 
limitation, either mental or physical. This means that 
6% of the total population in the country have a poor 
quality of life. According to the National Institute of 

Statistics and Geography (2014), mobility restrictions 
are the most recurrent disability and they are typically 
associated with aging process, traumatic injuries or 
congenital conditions. Unfortunately, MI based BCIs 
are still a laboratory prototype since not anyone at any 
time can control the system. The system functionality 
greatly depends on the modulation of EEG signals by 
means of MI related tasks. MI as control task in BCIs 
has been seen as a skill that must be acquired, but no 
user conditions nor controlled learning conditions 
have been taken into account. In this paper, it has been 
proposed a mixed methodology on the basis of (1) 
user-profiles, (2) psychological and neurophysiological 
factors associated with MI control tasks, and (3) UX so 
as to improve individual user performances, and 
increase the number of qualified users.
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