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RESUMEN 
Este artículo presenta un enfoque integral para el monitoreo y predicción de enfermedades infecciosas mediante el 
análisis de redes sociales, enfocado en la pandemia de COVID-19. El objetivo es identificar afirmaciones de contagio en 
tiempo real y estimar su evolución como complemento a la vigilancia epidemiológica tradicional. Se desarrolló un sistema 
que combina técnicas de procesamiento de lenguaje natural, usando el modelo BERT para clasificar afirmaciones de 
contagio en X, y la función de Gompertz para proyectar casos a corto plazo. La metodología también incluye análisis de 
publicaciones georreferenciadas, predicciones mediante ventanas móviles y representación espacial de zonas de riesgo 
mediante mapas de calor. Los resultados muestran una correlación significativa entre las menciones en X y los reportes 
oficiales, sugiriendo una sincronicidad temporal entre ambas fuentes. Se reconocen limitaciones importantes como el 
sesgo urbano en la muestra de usuarios y la escasa representación rural. Finalmente, se concluye que las redes sociales 
representan un recurso potencialmente valioso como fuente complementaria para generar alertas epidemiológicas 
oportunas, fortaleciendo así la toma de decisiones en salud pública. 
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ABSTRACT 
This article presents a comprehensive approach for monitoring and predicting infectious diseases through social media 
analysis, focusing on the COVID-19 pandemic. The objective is to identify real-time contagion reports and estimate disease 
trends as a complement to traditional epidemiological surveillance. We developed a system integrating natural language 
processing techniques, employing the BERT model to classify contagion statements on X, and using the Gompertz function 
to forecast short-term case growth. The methodology also incorporates analysis of georeferenced posts, predictions via 
rolling windows, and spatial representation of risk areas through heat maps. Results indicate a significant correlation 
between X mentions and official health reports, suggesting temporal synchronicity between both data sources. Important 
limitations are acknowledged, such as the urban bias in X user samples and the underrepresentation of rural populations. 
Finally, it is concluded that social media represent a potentially valuable resource as a complementary source for 
generating timely epidemiological alerts, thereby strengthening public health decision-making. 
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INTRODUCTION 

Las enfermedades infecciosas representan un desafío persistente y crítico para la salud pública global, lo que exige 

estrategias de monitoreo capaces de detectar y seguir en tiempo real las zonas de contagio, permitiendo una 

respuesta oportuna ante su propagación[1]. La pandemia de COVID-19 ha evidenciado la urgencia de desarrollar 

métodos más eficientes de vigilancia epidemiológica, dado su alto índice de transmisión y el impacto global sin 

precedentes[2]. No obstante, la dependencia exclusiva de datos provenientes de centros de salud y hospitales limita 

la capacidad de respuesta de las instituciones sanitarias, debido a los retrasos inherentes en la recopilación, 

procesamiento y análisis de esta información. 

 

En las últimas décadas, las redes sociales han emergido como un recurso invaluable para la vigilancia de fenómenos 

sociales y de salud. Entre estas plataformas, Twitter, actualmente denominado X, se ha consolidado como una fuente 

de datos en tiempo real, que refleja no solo la percepción pública sobre temas de salud, sino también indicios de 

posibles brotes infecciosos mediante menciones de síntomas y la ubicación de los usuarios. La riqueza y rapidez de 

esta información presenta una oportunidad única para complementar los sistemas de monitoreo tradicionales 

mediante un análisis que capture eventos y tendencias de salud en el momento en que ocurren[3]. Sin embargo, el 

aprovechamiento de esta información requiere abordar desafíos como la gestión del ruido en los datos, la 

identificación precisa de menciones relevantes y la integración de estos hallazgos con modelos epidemiológicos 

convencionales. 

 

Este artículo propone un enfoque innovador para el monitoreo y la predicción de enfermedades infecciosas a 

través del análisis de redes sociales, utilizando datos de X como insumo principal para identificar y proyectar áreas 

de contagio. Mediante la integración de técnicas de procesamiento de lenguaje natural, el modelo BERT, redes 

neuronales convolucionales y la función de Gompertz para proyecciones epidemiológicas, se busca proporcionar una 

herramienta moderna que complemente los métodos convencionales de vigilancia. En este estudio, el enfoque se 

implementó para el monitoreo del COVID-19 en México, aunque su aplicabilidad se extiende a diversas 

enfermedades infecciosas. Los resultados obtenidos no solo destacan la viabilidad de estas tecnologías, sino que 

también ofrecen herramientas concretas para fortalecer la respuesta epidemiológica y mejorar la toma de decisiones 

en salud pública, sentando las bases para una vigilancia más proactiva y eficaz ante futuras pandemias. 

 

El monitoreo epidemiológico ha incorporado enfoques innovadores con el auge de las redes sociales, 

consolidándose X como una fuente valiosa de datos no estructurados para identificar patrones y tendencias en salud 

pública. Diversas investigaciones han explorado su potencial para complementar los sistemas tradicionales de 

vigilancia epidemiológica mediante métodos avanzados de análisis de datos en tiempo real. 

 

El uso de X para monitorear la pandemia de COVID-19 ha sido ampliamente estudiado. En España, Arjona[4] analizó 

la distribución espacial y temporal de términos relacionados con el virus, generando mapas de calor que facilitaron 

la comprensión de su propagación y resaltaron la utilidad de los datos sociales como complemento de los informes 

oficiales. De manera similar, en la investigación de Hoque[5] se analizaron millones de mensajes publicados durante 

las primeras etapas de la pandemia, revelando disparidades en las respuestas emocionales y conductuales a las 

medidas de salud pública entre distintas regiones. 

 

Más allá del COVID-19, X ha sido empleado para mapear la epidemiología de otras enfermedades. En la 

investigación de Tulloch[6] se empleó en la vigilancia de la enfermedad de Lyme en el Reino Unido e Irlanda, 
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encontrando una fuerte correlación entre los datos obtenidos en la plataforma y las cifras oficiales, lo que subraya la 

capacidad de las redes sociales para reflejar con precisión la incidencia y distribución de enfermedades. Por otro 

lado, en la investigación de Chae[7] se combinaron datos de X, motores de búsqueda y registros oficiales para predecir 

la aparición de enfermedades infecciosas mediante modelos de aprendizaje profundo, demostrando el valor de 

integrar múltiples fuentes digitales para mejorar la precisión en las proyecciones epidemiológicas. 

 

En otros ámbitos, como la salud mental y la gestión de desastres, las redes sociales han mostrado su utilidad como 

herramientas de monitoreo. Por ejemplo, en la investigación de Birjali[8] se implementaron algoritmos de 

aprendizaje automático para detectar patrones de ideación suicida en las publicaciones, mientras que Reynard y 

Shirgaokar[9] destacaron el papel de X en la toma de decisiones durante emergencias, utilizando datos geolocalizados 

para evaluar daños y asignar recursos de manera eficiente. Además, el análisis geoespacial ha cobrado relevancia en 

la interpretación de datos sociales, con estudios como el de Gu[10], quienes propusieron un modelo de confianza social 

para inferir la ubicación de los usuarios, y Redondo[11], que aplicaron técnicas de entropía y agrupamiento para 

identificar actividades inusuales en entornos urbanos. 

 

Asimismo, investigaciones como las de Alonso[12] y Xiong[13] han explorado el uso de redes sociales basadas en la 

ubicación para recomendar actividades o puntos de interés, aprovechando datos espacio-temporales para mejorar 

la precisión de los resultados. Estos enfoques demuestran la versatilidad del análisis de datos en redes sociales para 

inferir patrones espaciales y comportamentales en distintos contextos. 

 

No obstante, el uso de X como fuente de datos para estudios epidemiológicos presenta limitaciones importantes 

que deben abordarse con cuidado y procesarse adecuadamente. En primer lugar, diferenciar publicaciones 

provenientes de personas reales y cuentas automatizadas (bots) continúa siendo un desafío. Estudios recientes 

estiman que aproximadamente el 9 % de las publicaciones relacionadas con COVID-19 podrían haber sido generados 

por bots[14]. Estos bots frecuentemente se enfocan en contenido político, críticas hacia medidas sanitarias o difusión 

de mensajes negativos, lo que distorsiona la percepción general obtenida de la plataforma[15]. 

 

En segundo lugar, los datos generados por los usuarios en X reflejan fuertes sesgos cognitivos, ideológicos y 

emocionales. Por ejemplo, en la investigación de Jiang[16] se muestra que durante la pandemia de COVID-19 hubo 

una notable politización del discurso, con comunidades divididas que operaban en “cámaras de eco”, reforzando 

visiones polarizadas sobre temas clave como el uso de mascarillas o las vacunas. Asimismo, en la investigación de 

Xue[17] se identifica que emociones intensas como miedo, ira y ansiedad, comunes durante brotes epidémicos, 

pueden amplificar contenidos alarmistas y limitar la diversidad de la información compartida, sesgando así el 

análisis automatizado de contenido. 

 

En tercer lugar, debe considerarse la limitada veracidad de las afirmaciones personales de contagio publicadas en 

redes sociales, ya que no existe un mecanismo formal de verificación clínica en estas plataformas. La naturaleza 

autorreportada de estas publicaciones implica que algunas personas pueden comunicar información imprecisa, 

exagerada o incluso falsa, ya sea intencionadamente o por error. Para mitigar este riesgo, algunos estudios han 

propuesto estrategias de filtrado más estrictas que incluyen únicamente aquellas publicaciones donde los usuarios 

declaran explícitamente haber recibido un diagnóstico confirmado, ya sea mediante prueba PCR o valoración médica 

directa[18][19]. Estas investigaciones han demostrado que, al aplicar estos criterios, es posible construir conjuntos de 

datos más confiables y útiles para el monitoreo epidemiológico. Aun así, incluso con estos filtros, persiste un grado 

de incertidumbre, por lo que estos datos deben interpretarse con cautela y preferentemente a nivel agregado. 
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En cuarto lugar, la presencia de desinformación y teorías conspirativas en X representó una limitación significativa 

durante la pandemia. Desde etapas tempranas circularon narrativas infundadas, como la supuesta relación entre el 

virus y la tecnología 5G o la idea de que las vacunas tenían propósitos ocultos. Investigaciones encontraron evidencia 

de que estos contenidos fueron amplificados por cuentas automatizadas y pequeños grupos altamente activos, lo 

que generó una falsa percepción de consenso en la plataforma[20][21]. Este fenómeno no solo afectó la calidad 

informativa del entorno digital, sino que también introdujo ruido en los datos, dificultando el análisis fiable del 

comportamiento y la percepción social frente a la pandemia. 

 

Finalmente, la representatividad geográfica y sociodemográfica de los usuarios de X constituye otra limitante 

importante. Estudios previos indican que los usuarios de esta plataforma tienden a ser más jóvenes, urbanos, con 

mayor nivel educativo y políticamente más inclinados hacia posiciones liberales o progresistas, en comparación con 

la población general[22][23]. Esta subrepresentación de poblaciones rurales, mayores o con limitado acceso digital 

implica que los datos recopilados deben interpretarse con cautela al extrapolarlos a contextos poblacionales más 

amplios. 

 

Estas limitaciones, aunque significativas, no anulan el valor potencial de los datos de redes sociales para 

complementar la vigilancia epidemiológica, especialmente cuando se interpretan correctamente y se combinan con 

métodos tradicionales de monitoreo. En conjunto, los antecedentes revisados subrayan tanto el potencial como las 

restricciones de X y otras redes sociales como herramientas para el monitoreo y predicción epidemiológica. En este 

trabajo, se propone un enfoque complementario de monitoreo que combina datos sociales con técnicas de 

procesamiento de lenguaje natural, modelado epidemiológico y aprendizaje profundo, con el objetivo de fortalecer 

los sistemas tradicionales al capturar señales tempranas de contagio que podrían pasar desapercibidas mediante 

métodos convencionales. Este enfoque busca enriquecer las herramientas existentes, ofreciendo una perspectiva en 

tiempo real basada en la actividad social en línea durante pandemias como la de COVID-19 en México. 

MATERIALES Y MÉTODOS 
En este apartado, se describen los conjuntos de datos, técnicas y herramientas utilizadas en el desarrollo y 

validación del enfoque propuesto para el monitoreo y predicción de enfermedades infecciosas mediante X. La 

metodología seguida en este estudio se compone de una serie de fases diseñadas para optimizar la identificación y 

el análisis de información relevante en redes sociales, con el objetivo de mejorar la vigilancia epidemiológica. 

 

Este enfoque busca superar las limitaciones de los métodos convencionales en términos de inmediatez, 

proporcionando información en tiempo real que puede ser valiosa para la toma de decisiones en salud pública. La 

Figura 1 presenta un diagrama de flujo de la metodología empleada en esta investigación.  
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FIGURA 1. Diagrama de flujo de la metodología para el monitoreo y  
predicción de enfermedades infecciosas utilizando redes sociales. 

 

La metodología integra técnicas de procesamiento de lenguaje natural, aprendizaje automático y modelado 

matemático para analizar menciones en X y proyectar posibles tendencias de contagio. Se compone de cinco fases 

principales: adquisición de datos, preprocesamiento de datos, clasificación de afirmaciones de contagio, predicción 

de afirmaciones de contagio e identificación de zonas de contagio. A continuación, se describe en detalle cada una de 

estas fases. 

 

La adquisición de datos es la fase encargada de obtener y almacenar las publicaciones de la plataforma X 

(anteriormente conocidas como tweets cuando se denominaba Twitter), con el objetivo de recopilar información 

relevante para el análisis. Estas publicaciones (también llamadas posts en su terminología actual) pueden contener 

texto, enlaces, imágenes, videos y metadatos adicionales, como la fecha y hora de publicación, información del 

usuario y, en algunos casos, datos de ubicación. Cuando el usuario así lo permite, estas publicaciones incluyen 

información de georreferenciación, es decir, coordenadas geográficas que indican el lugar aproximado desde donde 

fueron publicadas. 

 

La API de X permite obtener publicaciones georreferenciadas si se configura un filtro por locations, el cual acepta 

uno o varios bounding boxes definidos por dos coordenadas diagonales opuestas. En este estudio, se delimitó la 

República Mexicana a través de 24 bounding boxes. Cada uno fue definido manualmente utilizando la herramienta 

boundingbox.klokantech.com, mediante trazos visuales sobre el mapa y copiando las coordenadas correspondientes 

al rectángulo generado. 
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La elección de estos 24 bounding boxes respondió a un criterio de equilibrio entre precisión geográfica y 

factibilidad operativa. Un número menor de bounding boxes habría implicado áreas demasiado amplias, con mayor 

probabilidad de capturar datos provenientes de países vecinos. Por otro lado, utilizar un número considerablemente 

mayor puede ofrecer una delimitación más precisa, aunque también incrementa la complejidad en la configuración. 

En este sentido, la cantidad de bounding boxes utilizada puede variar según los objetivos y recursos de cada 

investigador. En este estudio, cada bounding box fue definido cuidadosamente para cubrir el territorio de la 

República Mexicana, procurando que la superposición con zonas limítrofes de Guatemala, Belice o Estados Unidos 

fuera la menor posible. La Figura 2 muestra la distribución geográfica de los bounding boxes utilizados. 

 

 
FIGURA 2. Distribución geográfica de los 24 bounding boxes utilizados para delimitar el 
territorio de la República Mexicana durante el proceso de adquisición de datos en X 

La adquisición de publicaciones georreferenciadas se llevó a cabo mediante un proceso automatizado en Python 

que utilizó la biblioteca Tweepy[24], permitiendo interactuar con la API de X de manera eficiente. El acceso a la API de 

X requirió el registro en la plataforma para desarrolladores, donde se aprobaron y asignaron tokens de autenticación. 

Estos tokens fueron esenciales para la recopilación automatizada de publicaciones en tiempo real dentro de la región 

delimitada por los bounding boxes. 

 

El proceso de adquisición de datos se llevó a cabo del 1 de octubre de 2021 al 13 de marzo de 2023. Este periodo 

comenzó tras finalizar las pruebas del sistema de recolección y concluyó debido a los cambios en las políticas de 

acceso a la API de X. Durante este período, se almacenaron en tiempo real todas las publicaciones georreferenciadas 

en México, segundos después de ser publicados en X. Como resultado, se recopilaron 20,008,585 registros, cada uno 

con 15 atributos, los cuales fueron almacenados en una base de datos relacional para facilitar su gestión y análisis. 

La Tabla 1 presenta la descripción de los atributos. 
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TABLA 1. Descripción de los atributos de un registro. 

Atributo Valor de ejemplo 
tweet.id 123456789012345678 

tweet.text "Este es una publicación de ejemplo" 
tweet.truncated False 

tweet.extended_tweet["full_text"] "Este es el texto completo de una publicación extendida..." 
tweet.user.id 987654321 

tweet.user.name "Monica Pérez" 
tweet.user.screen_name "MoniP123" 
tweet.user.description "Apasionada de la tecnología y la programación" 

tweet.user.location "Ciudad de México" 
tweet.created_at 2025-02-15 12:34:56  

tweet.place.id "07d9cd2eef4f207f" 
tweet.place.full_name "Ciudad de México, México" 
tweet.place.country "México" 

tweet.place.place_type "city" 
tweet.place.bounding_box.coordinates [[[-99.3647, 19.0112], [-99.3647, 19.6399], [-98.9403, 

19.6399], [-98.9403, 19.0112]]] 

 

El preprocesamiento de datos es la fase en la que se organizan, filtran y transforman los datos adquiridos para que 

sean adecuados para el análisis. Su objetivo principal es mejorar la calidad, estructura y utilidad de la información 

mediante la eliminación de datos irrelevantes, la organización en una base de datos estructurada y la normalización 

del contenido textual. Esto asegura que los datos sean representativos y confiables para su posterior clasificación y 

modelado. En este estudio, el preprocesamiento se realizó en dos niveles principales: 

 

Estructuración y almacenamiento de datos 

Una vez obtenidos los datos en bruto desde X, estos se almacenaron en una base de datos relacional organizada en 

diversas tablas. Se creó una estructura que separa la información en tablas específicas, tales como: 

 

• Usuarios: Contiene información del usuario que realizó la publicación, como su identificador único, nombre 

de usuario y cantidad de seguidores. 

 

• Ubicaciones: Almacena información sobre la georreferenciación cuando está disponible, incluyendo 

coordenadas y bounding boxes asociados. 

 

• Publicaciones: Contiene el texto de la publicación, su identificador único, la fecha y hora de publicación, y 

referencias a las tablas de usuarios y ubicaciones. 

 

Esta organización permite optimizar la gestión de los datos, evitando redundancias y facilitando su recuperación 

eficiente para el análisis posterior. 

 

Preprocesamiento de texto 

Una vez almacenados, los textos de las publicaciones fueron sometidos a procesos de filtrado y transformación 

para mejorar la calidad y el rendimiento del modelo clasificador de afirmaciones de contagio. 

 

• Filtrado de textos de bots, medios de comunicación y figuras públicas: 

 

Para asegurar que los textos analizados reflejaran experiencias personales de contagio, se descartaron 

publicaciones generadas por bots, medios de comunicación y figuras públicas, debido a su tendencia a publicar 
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contenido institucional, repetitivo o general sobre la pandemia. Esta exclusión se realizó mediante una lista negra 

elaborada durante el preprocesamiento, en la cual se registraron manualmente los identificadores únicos (ID’s) 

de los usuarios considerados irrelevantes. 

 

• La identificación de estos usuarios se realizó mediante criterios heurísticos específicos: 

 

• Cuentas verificadas (generalmente asociadas a celebridades, figuras públicas o periodistas reconocidos). 

 

• Usuarios con gran número de seguidores (>10,000), lo cual habitualmente caracteriza a figuras públicas 

y medios de comunicación. 

 

• Perfiles con actividad excesiva (más de 200 publicaciones diarias), comportamiento típico de bots 

automatizados. 

 

• Usuarios con alta proporción de contenido duplicado o repetitivo. 

 

El proceso de filtrado fue parcialmente automatizado. Al finalizar cada día, se ejecutaba un script que 

contabilizaba publicaciones por usuario, detectaba textos repetidos y registraba el número de seguidores. Con 

base en estos resultados, los colaboradores del proyecto revisaban y validaban manualmente cuáles usuarios 

debían incluirse en la lista negra, asegurando así que las publicaciones analizadas fueran relevantes y auténticas 

para el estudio epidemiológico propuesto. 

 

• Filtrado de textos por palabras clave: Se seleccionaron únicamente los textos que contenían términos 

relacionados con la enfermedad, de acuerdo con un conjunto de palabras clave identificadas 

manualmente. En este caso de estudio, las palabras clave fueron las diversas formas en las que las 

personas mencionaron al COVID-19, tales como "covicho", "cobicho", "covid", "cobid", "coronavirus", 

"sars-cov2" y "coronabirus". Este filtrado permitió enfocar el análisis en publicaciones potencialmente 

relevantes para la detección de contagios.  

 

• Transformaciones aplicadas a los textos seleccionados: Tras el filtrado, los textos fueron sometidos a una 

serie de modificaciones para estandarizar su formato y reducir el ruido. Las transformaciones aplicadas 

a los textos se visualizan en la Tabla 2. 

 

TABLA 2. Técnicas empleadas en el preprocesamiento de los datos. 

Técnica de limpieza Ejemplos 
Conversión de hashtags relacionados con COVID-19 a 
texto 

Entrada: Amigos me dio el #COVID me siento mal 
Salida: Amigos me dio el COVID me siento mal 

Eliminación de URL's Entrada: Si tienen covid pueden enviar registrarse en 
http://tengocovid.com 
Salida: Si tienen covid pueden enviar registrarse en  

Eliminación de caracteres especiales y emojis Entrada: ¡No puedo creerlo! 😷😢 #COVID19 está 
afectando a mucha gente!!! 💔💔💔 
Salida: No puedo creerlo COVID19 está afectando a 
mucha gente 

Manejo de caracteres especiales Caracteres como la 'Ñ' no se eliminaron 
Entrada: Soñe o tengo covid 
Salida: Soñe o tengo covid 
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En esta fase se desarrolló un clasificador binario al que se le ha denominado ConBiBER (BERT + CNN), diseñado 

para identificar automáticamente textos que contienen afirmaciones positivas de contagio. Este clasificador combina 

BERT[25][26], encargado de extraer representaciones semánticas del lenguaje, con redes convolucionales (CNN)[27], 

que procesan los embeddings generados y detectan patrones relevantes en las secuencias de texto. 

 

El modelo BERT se seleccionó para abordar la complejidad lingüística propia de las publicaciones en redes sociales, 

en las que las afirmaciones de contagio pueden expresarse de manera ambigua, informal o mediante lenguaje 

figurado. A diferencia de los filtros basados en palabras clave, que resultaron limitados para detectar frases no 

literales como “ya me tocó el cobicho” o “hoy amanecí positivo #covicho”, BERT permite interpretar el significado 

contextual de las expresiones. Esta capacidad resulta clave para identificar menciones de contagio redactadas de 

forma no convencional, ampliando el alcance del clasificador más allá de las afirmaciones explícitas.  

 

Además, BERT fue seleccionado con la intención de facilitar futuras aplicaciones en el monitoreo de otras 

enfermedades infecciosas, permitiendo entrenar nuevos clasificadores de manera ágil y eficiente a partir de datos 

etiquetados, sin necesidad de diseñar manualmente reglas o filtros específicos para cada caso. 

 

La arquitectura de ConBiBER incluye una capa de embeddings basada en BERT, seguida de capas convolucionales 

con filtros de bigrama, trigrama y cuatrograma para capturar relaciones contextuales[28]. La reducción de 

dimensionalidad se efectuó con GlobalMaxPooling, cuya salida alimentó una capa densa de 512 neuronas (ReLU), y 

finalmente una neurona sigmoide para la clasificación binaria. 

 

Los hiperparámetros y ajustes específicos se resumen a continuación: 

• Modelo base: BERT multi-cased L-12_H-768_A-12 

• Tokenización: WordPiece, longitud máxima = 128 tokens 

• Capas convolucionales paralelas: 

• Filtros 2-gram, 3-gram y 4-gram (100 filtros cada uno, ReLU) 

• Pooling: GlobalMaxPooling1D 

• Capa densa oculta: 256 unidades, ReLU, regularización L1/L2 = 0.001 

• Dropout: 0.5 

• Capa de salida: 1 neurona, sigmoide, L1 = 0.01 

• Batch size: 32  Épocas: 40 

• Función de pérdida: binary_crossentropy 

• Optimizador: Adam 

• Pesos de clase: {0:1.0, 1:8.0} 

 

El clasificador se entrenó con un conjunto de datos desbalanceado de 4,500 textos: 3,900 con menciones generales 

sobre COVID-19 y 600 con afirmaciones de contagio. Esta decisión buscó simular condiciones similares a las 

observadas en X. Para mitigar el desbalance entre clases, se empleó una técnica basada en asignar pesos 

diferenciados a cada clase durante el entrenamiento. 

 

El conjunto de 4,500  textos utilizados para el entrenamiento fue etiquetado manualmente por un colaborador del 

proyecto. Las publicaciones fueron previamente filtradas mediante palabras clave asociadas al COVID-19 ("sars-

cov2", "covid", "covicho", "coronavirus", "cobi", "covi"), y luego clasificados en dos categorías: afirmaciones positivas, 
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cuando el contenido expresaba un contagio personal, y menciones generales, cuando se aludía al virus sin confirmar 

un diagnóstico positivo. Se priorizaron textos redactados en primera persona y con indicios claros de contagio, 

aislamiento o síntomas compatibles, con el fin de asegurar una base confiable para el entrenamiento del clasificador. 

 

La Tabla 3 presenta ejemplos del conjunto de datos de entrenamiento; el conjunto completo puede consultarse 

en[28]: 

 

TABLA 3. Conjunto de datos de entrenamiento del clasificador ConBiBER. 
Id Texto Clase 

1 amigos me dio el covid 1 
2 raza ya di positivo al cobid 1 
... ... ... 
600 oren por mi me dio el covicho 1 
601 la covid-19 ha aumentado en mexico 0 
602 gracias a dios fui negativo al covid 0 
... ... ... 
4500 sigo invicto al covicho 0 

 

Los textos clasificados por ConBiBER se emplearon para predecir afirmaciones de contagio utilizando el modelo 

matemático de Gompertz, conocido por su eficacia en la modelización de fenómenos biológicos y 

epidemiológicos[29][30][31]. Este modelo es adecuado para describir la progresión de epidemias, ya que capta tanto la 

fase inicial de crecimiento exponencial como la fase de estabilización. 

 

La estructura general del modelo Gompertz se representa matemáticamente mediante la función (1): 

 

𝑓(𝑡) = 𝑎𝑒−𝑏𝑒
−𝑐𝑡

 (1) 

  

donde: 

• f(t) representa el número acumulado de casos en el tiempo t. 

• a simboliza el límite asintótico, o el número máximo proyectado de casos. 

• b es un parámetro que controla la posición de la curva en el eje temporal. 

• c define la tasa de crecimiento, relacionada directamente con la velocidad de transmisión del virus. 

 

El modelo de Gompertz fue utilizado para predecir la evolución de las afirmaciones positivas de contagio 

identificadas en X. Para ello, se empleó una estrategia de ventanas móviles de 7, 15 y 30 días, que permitió generar 

series de tiempo localizadas para distintos periodos. Sobre cada una de estas ventanas, se ajustó una curva del 

modelo, es decir, se calcularon los valores óptimos de los parámetros a, b y c que permiten que la curva generada se 

asemeje lo más posible a la evolución acumulada de afirmaciones observadas en dicho periodo. Esta estimación se 

realizó mediante regresión no lineal por mínimos cuadrados, utilizando el algoritmo de Levenberg-Marquardt.  

 

Para realizar este ajuste, se generó una serie de tiempo acumulada con las afirmaciones positivas clasificadas por 

ConBiBER dentro de cada ventana. El eje temporal t representa los días transcurridos desde el inicio de la ventana, 

y f(t) corresponde al número acumulado de menciones afirmativas en ese intervalo. La estimación de los parámetros 

se realizó mediante regresión no lineal por mínimos cuadrados, utilizando el algoritmo de Levenberg-Marquardt. El 

objetivo fue minimizar la suma del error cuadrático (diferencias elevadas al cuadrado) entre los valores predichos 

por la curva de Gompertz y los datos reales. Este procedimiento se repitió iterativamente para cada ventana, 

generando predicciones personalizadas a corto plazo. 
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La Figura 3 ilustra este procedimiento. La sección en amarillo representa los datos históricos utilizados para el 

ajuste del modelo en cada ventana móvil, mientras que la sección en verde muestra el horizonte de predicción 

generado. En la parte superior, se observa una ventana móvil de 7 días que avanza progresivamente en la serie 

temporal, calculando predicciones de hasta 5 días. En la parte inferior, una ventana de 15 días ofrece una base más 

amplia para la predicción. Este enfoque garantiza que las proyecciones se realicen con base en la información más 

reciente disponible. 

  

 
FIGURA 3. Esquema del uso de ventanas móviles para la predicción de afirmaciones de contagio. Las ventanas 

de entrada (amarillo) se desplazan día a día y generan predicciones acumuladas (verde) mediante ajuste del 

modelo Gompertz. 

 

Este procedimiento tuvo como objetivo generar curvas que describieran de manera precisa la evolución 

acumulada de las afirmaciones de contagio a corto plazo. Las curvas resultantes capturaron adecuadamente tanto la 

fase de crecimiento exponencial como la de estabilización, lo que valida su utilidad como herramienta predictiva en 

contextos epidemiológicos. Las predicciones se generaron de forma iterativa, actualizando diariamente la ventana 

de entrada. Las métricas de error calculadas (RMSE y MAE) para horizontes de 1 y 5 días mostraron un buen ajuste, 

respaldando que es posible aproximar la evolución de los contagios acumulados a partir de los datos obtenidos en 

X. 

 

La identificación de zonas de contagio es un proceso clave en el monitoreo epidemiológico, ya que permite detectar 

áreas con alta concentración de casos positivos de contagio y analizar su evolución en el tiempo. Para ello, se empleó 

un enfoque geoespacial basado en datos obtenidos de X, utilizando técnicas de georreferenciación y modelado de 

riesgo. Este análisis se llevó a cabo mediante la integración de datos espaciales en un mapa de calor, el cual 

representa la distribución del riesgo de contagio en los estados de la República Mexicana. La actualización diaria de 

este mapa permitió identificar regiones con alta incidencia de afirmaciones de contagio, facilitando la toma de 

decisiones en salud pública y la detección de patrones en la propagación del virus. 

 

La identificación de estas zonas se realizó a través de dos fuentes principales de información geográfica: 

 

• Bounding boxes: X proporciona coordenadas georreferenciadas en formato de bounding boxes, los cuales 

delimitan una región aproximada de donde se emitió la publicación. Para asignar cada publicación a un 

estado específico, se tomó el centro del bounding box y se comparó con los polígonos geográficos de los 32 

estados de México. 
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• Metadatos de la publicación: En algunos casos, X incluye el nombre del estado de la república de donde se 

emitió la publicación. Esta información fue utilizada cuando estaba disponible para mejorar la precisión de 

la asignación geográfica. 

 

Una vez asignadas las publicaciones afirmativas de contagio a su ubicación correspondiente, se calculó un índice 

de riesgo para cada estado. Este índice se determinó dividiendo el número de casos activos por el número máximo 

esperado de casos en la región. 

 

• Casos activos: Se definieron como las publicaciones afirmativas de contagio publicados en los últimos siete 

días, incluyendo la fecha de cálculo. 

 

• Número máximo de casos esperados: Se estableció heurísticamente en función de un porcentaje de la 

cantidad total de publicaciones recopiladas en cada estado. 

 

Con base en el índice de riesgo, se asignaron colores en el mapa de calor, permitiendo visualizar de manera intuitiva 

las áreas con mayor concentración de contagios. Los umbrales de color fueron definidos de acuerdo con la densidad 

de casos positivos, asegurando una representación clara del nivel de riesgo en cada estado. El índice de riesgo y la 

distribución de las zonas de contagio se recalcularon diariamente, generando una visualización dinámica que 

reflejaba la evolución de la pandemia en distintas regiones del país. Este enfoque permitió detectar zonas críticas de 

propagación, contribuyendo a mejorar las estrategias de vigilancia epidemiológica. 

 

RESULTADOS Y DISCUSIÓN 
 

Los hallazgos obtenidos a partir de la aplicación del enfoque propuesto en esta investigación se centraron en el 

monitoreo y predicción del COVID-19 en X. Estos resultados se presentan en tres apartados principales: análisis de 

afirmaciones COVID-19, evaluación de la predicción de menciones de contagios y visualización geoespacial en mapa 

de calor. 

 

El modelo de clasificación ConBiBER fue evaluado utilizando un conjunto de datos de prueba, compuesto por 650 

textos relacionados con COVID-19 y 100 textos que afirmaban un diagnóstico positivo de la enfermedad. En la Figura 

4 se muestra la matriz de confusión de la evaluación del conjunto de datos de prueba.  



Pedro Wences et al. Monitoreo y Predicción de Enfermedades Infecciosas a través del Análisis de Redes Sociales 14  

 
FIGURA 4. Matriz de confusión resultante de la evaluación del modelo ConBiBER sobre un conjunto de 

prueba compuesto por 650 textos relacionados y 100 afirmaciones positivas de contagio. 

 

Las métricas de desempeño obtenidas del conjunto de datos de prueba se resumen en la Tabla 4. En particular, el 

modelo mostró un alto valor de Sensibilidad, lo que indica que es capaz de etiquetar correctamente la mayoría de 

los textos afirmativos, una característica esencial para no pasar por alto menciones de contagio en el contexto del 

monitoreo epidemiológico. La precisión del 73.9% refleja que el modelo incurre en una proporción relevante de 

falsos positivos, es decir, clasifica algunos textos no afirmativos como afirmativos. Este comportamiento está 

influenciado por el desbalance del conjunto de prueba, donde la clase negativa es mayoritaria. Por ello, la precisión 

debe interpretarse con cautela y complementarse con otras métricas más robustas ante el desbalance. 

 

TABLA 4. Métricas del conjunto de datos de prueba. 

Métrica Valor 
Exactitud 94.5% 
Precisión 73.9% 

Sensibilidad 91.0% 
Especificidad 95.0% 

F1-Score 81.6% 

 

Es importante destacar que el proceso de filtrado aplicado durante el preprocesamiento contribuyó a reducir el 

ruido en los datos de entrada. Al eliminar publicaciones institucionales, duplicadas o no relacionadas con 

experiencias personales, se mejoró la coherencia semántica del conjunto de entrenamiento, lo que favoreció el 

rendimiento del clasificador ConBiBER. Esta depuración permitió que el modelo se enfocara en identificar patrones 

lingüísticos propios de declaraciones personales de contagio, lo cual se refleja en sus métricas de evaluación. 

 

Posteriormente, el clasificador ConBiBER fue integrado en el flujo de datos de X para etiquetar publicaciones en 

tiempo real. Esta integración permitió clasificar casi en tiempo real publicaciones desde el 1 de noviembre de 2021 

hasta el 13 de marzo de 2023. 
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Los resultados del etiquetado en tiempo real mostraron una correlación significativa entre las menciones en X y 

los contagios reportados oficialmente, con una correlación de Pearson de 0.83. Esta correlación no implica una 

relación causal, sino que sugiere una posible sincronicidad temporal entre ambas fuentes. Se presenta como un 

análisis exploratorio que evidencia cierta similitud en la forma de las curvas temporales. En este sentido, los datos 

extraídos de redes sociales podrían considerarse como un insumo complementario dentro de los sistemas de 

monitoreo epidemiológico, especialmente al capturar manifestaciones de contagio que pueden no ser registradas 

por los métodos tradicionales de salud pública. 

 

Los conjuntos de datos de X y los reportes oficiales de contagios de la Secretaría de Salud de México fueron 

normalizados para facilitar la comparación, ajustando las series diarias a una escala común. Los datos oficiales 

fueron descargados del portal del Gobierno de México administrado por CONACYT[32]. La Figura 5 muestra cómo los 

datos de ambas fuentes presentan un comportamiento similar a lo largo del tiempo, reflejando picos y tendencias de 

manera alineada.  

 

  
FIGURA 5. Comparación temporal entre los casos oficiales de COVID-19 reportados por la Secretaría de Salud 

de México y las afirmaciones positivas clasificadas en X. Las series fueron normalizadas para facilitar la 

comparación. La correlación observada (r = 0.83) sugiere una sincronicidad temporal entre ambas fuentes. 

 

Al analizar la Figura 5, se observa que los picos de afirmaciones positivas de contagio en X tienden a estar 

ligeramente desplazados hacia la izquierda respecto a los picos de contagios reportados por la Secretaría de Salud. 

Esta diferencia temporal sugiere que las publicaciones en redes sociales podrían anticipar los brotes o incrementos 

en los contagios oficiales. Aunque esta hipótesis no puede ser validada directamente en este estudio, plantea la 

posibilidad de que las redes sociales funcionen como un sistema de alerta temprana. 

 

Dos explicaciones plausibles sustentan esta observación. La primera es que los usuarios tienden a compartir sus 

síntomas o diagnósticos de manera inmediata en sus cuentas personales, antes de acudir a centros de salud o ser 

contabilizados en los sistemas oficiales. La segunda posibilidad es que, en algunos casos, las personas con síntomas 

o sospecha de contagio simplemente no son registradas oficialmente, ya sea por limitaciones de acceso, desinterés o 

falta de pruebas. Validar esta teoría requeriría estudios de campo con pruebas rápidas en zonas geográficas 



Pedro Wences et al. Monitoreo y Predicción de Enfermedades Infecciosas a través del Análisis de Redes Sociales 16  

específicas donde se detecten estas menciones, para confirmar si efectivamente anticipan un aumento real de 

contagios. 

 

En este sentido, la comparación entre ambas curvas no solo permite evaluar la sincronía entre fuentes sociales y 

oficiales, sino que también abre la puerta al uso de datos de redes sociales como complemento temprano en 

estrategias de vigilancia epidemiológica. 

 

Estos resultados pueden compararse con el trabajo de Osorio[4], cuyos autores también utilizaron Twitter para 

detectar posibles contagios en España. Sin embargo, en contraste con nuestro enfoque basado en clasificación 

supervisada con BERT (ConBiBER), en [4] emplearon un método basado en términos clave sin clasificación 

semántica avanzada. Esto posiciona nuestro método con mayor capacidad para interpretar afirmaciones ambiguas 

o no literales, mejorando así la precisión en la identificación de contagios reportados informalmente en redes 

sociales. 

 

El modelo predictivo de menciones de contagio se evaluó durante el período del 1 de noviembre de 2021 al 13 de 

marzo de 2023. En este análisis, se emplearon ventanas móviles de 7, 15 y 30 días con el objetivo de generar 

predicciones a 1 y 5 días a futuro. 

 

La elección de estos tamaños de ventana se fundamentó en un equilibrio entre sensibilidad y estabilidad: las 

ventanas cortas (7 días) permiten capturar con mayor rapidez cambios recientes en la dinámica de contagios, 

mientras que las ventanas más amplias (15 y 30 días) suavizan el efecto de anomalías o fluctuaciones abruptas, 

favoreciendo predicciones más estables. Esta combinación permitió evaluar el desempeño del modelo en diferentes 

condiciones de variabilidad epidemiológica.  

 

Las predicciones se validaron utilizando la raíz del error cuadrático medio (RMSE) y el error absoluto medio 

(MAE), lo que permitió un análisis detallado de la precisión en las estimaciones. Estas métricas son fundamentales 

para cuantificar el grado de ajuste entre los valores predichos y observados: cuanto más bajos son el RMSE y el MAE, 

mayor es la exactitud del modelo. 

 

En este contexto, las menciones observadas corresponden al número acumulado diario de publicaciones 

clasificadas como afirmaciones positivas de contagio mediante el modelo ConBiBER. Las menciones predichas, por 

su parte, son las estimaciones generadas por el modelo de Gompertz, calculadas sobre las series más recientes 

mediante ventanas móviles. Esta comparación permite evaluar la capacidad del sistema para anticipar la evolución 

a corto plazo de los patrones de contagio expresados en redes sociales. 

 

La Figura 6 presenta la comparación entre los valores observados y los valores predichos del modelo entrenado 

con un segmento de datos de 7 días previos y predicción a 1 día. 
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FIGURA 6. Comparación entre las menciones afirmativas observadas y las predichas por el modelo de Gompertz 

entrenado con una ventana móvil de 7 días, con horizonte de predicción de 1 día. 

 

Las medidas de evaluación para el modelo predictivo entrenado con un segmento de datos de 7 días previos y 

cálculos a 1 día fueron RMSE = ±5.34 y MAE = 2.83. 

 

La Figura 7 presenta la comparación entre los valores observados y los valores predichos del modelo entrenado 

con un segmento de datos de 7 días previos y cálculos a 5 días a futuro. 

 

 
FIGURA 7. Comparación entre las menciones afirmativas observadas y las predichas por el modelo de Gompertz 

entrenado con una ventana móvil de 7 días, con horizonte de predicción de 5 días. 

 

Las medidas de evaluación para el modelo predictivo entrenado con un segmento de datos de 7 días previos y 

cálculos a 5 días fueron RMSE = ± 11.47 y MAE = 5.18. 
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La Figura 8 presenta la comparación entre los valores observados y los valores predichos del modelo entrenado 

con un segmento de datos de 15 días previos y cálculos a 1 día a futuro. 

 
FIGURA 8. Comparación entre las menciones afirmativas observadas y las predichas por el modelo de Gompertz 

entrenado con una ventana móvil de 15 días, con horizonte de predicción de 1 día. 

 

Las medidas de evaluación para el modelo predictivo entrenado con un segmento de datos de 15 días previos y 

cálculos a 1 día fueron RMSE = ± 5.14 y MAE = 2.61. 

 

La Figura 9 presenta la comparación entre los valores observados y los valores predichos del modelo entrenado 

con un segmento de datos de 15 días previos y cálculos a 5 días a futuro. 

 
FIGURA 9. Comparación entre las menciones afirmativas observadas y las predichas por el modelo de Gompertz 

entrenado con una ventana móvil de 15 días, con horizonte de predicción de 5 días. 

 

Las medidas de evaluación para el modelo predictivo entrenado con un segmento de datos de 15 días previos y 

cálculos a 5 días fueron RMSE = ± 8.57 y MAE = 3.73 
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La Figura 10 presenta la comparación entre los valores observados y los valores predichos del modelo entrenado 

con un segmento de datos de 30 días previos y cálculos a 1 día a futuro. 

 
FIGURA 10. Comparación entre las menciones afirmativas observadas y las predichas por el modelo de 

Gompertz entrenado con una ventana móvil de 30 días, con horizonte de predicción de 1 día. 

 

Las medidas de evaluación para el modelo predictivo entrenado con un segmento de datos de 30 días previos y 

cálculos a 1 día fueron RMSE = ± 5.98 y MAE = 2.96. 

 

La Figura 11 presenta la comparación entre los valores observados y los valores predichos del modelo entrenado 

con un segmento de datos de 30 días previos y cálculos a 5 días a futuro. 

 
FIGURA 11. Comparación entre las menciones afirmativas observadas y las predichas por el modelo de 

Gompertz entrenado con una ventana móvil de 30 días, con horizonte de predicción de 5 días. 
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Las medidas de evaluación para el modelo predictivo entrenado con un segmento de datos de 30 días previos y 

cálculos a 5 días fueron RMSE = ± 10.08 y MAE = 3.89. 

 

Las gráficas y métricas de error muestran que el modelo logra capturar adecuadamente las tendencias generales 

en la evolución de las afirmaciones de contagio. En general, el modelo tiende a comportarse de manera similar a las 

menciones observadas, con una ligera subestimación incluso durante picos moderados. No obstante, en eventos con 

cambios muy abruptos (como el registrado en enero de 2022) se observa una tendencia a la sobreestimación. 

 

Se identificó que el modelo ofrece mejor precisión al realizar predicciones con un día de anticipación en 

comparación con las realizadas a cinco días. Asimismo, el modelo entrenado con una ventana móvil de 15 días fue el 

que mostró mejor desempeño tanto en el horizonte de 1 día como en el de 5 días, logrando un equilibrio entre 

estabilidad y sensibilidad ante cambios recientes. Estos hallazgos permiten orientar futuros ajustes del sistema de 

predicción hacia combinaciones óptimas de ventana y horizonte de pronóstico. 

 

Varios estudios recientes han propuesto modelos predictivos aplicados a datos provenientes de redes sociales para 

anticipar el comportamiento de enfermedades infecciosas. Por ejemplo, investigaciones como las de [33][34] han 

empleado redes neuronales recurrentes (LSTM y variantes RNN) para proyectar la evolución del COVID-19. Si bien 

estos modelos ofrecen buena capacidad de predicción, su naturaleza de caja negra limita la interpretabilidad de los 

resultados en contextos epidemiológicos. 

 

Otros trabajos, como [35] y [36], exploran comparativamente modelos como Prophet, ARIMA y redes neuronales, 

destacando sus ventajas en ciertas métricas, pero sin incorporar señales semánticas directas de afirmaciones 

personales. 

 

Por su parte, enfoques basados en modelos compartimentales, como los SEIR modificados (por ejemplo, [37] y 

[38]), permiten incorporar parámetros clínicos y poblacionales, pero no aprovechan el contenido generado en redes 

sociales como fuente directa de detección temprana. 

 

En contraste, el enfoque propuesto en este trabajo integra señales sociales explícitas (afirmaciones positivas de 

contagio clasificadas mediante ConBiBER) con un modelo interpretable de crecimiento epidémico (Gompertz), lo 

cual ofrece una combinación de sensibilidad semántica, capacidad de adaptación y claridad en la evolución temporal. 

Esta arquitectura permite realizar predicciones a corto plazo ajustadas dinámicamente, con mayor trazabilidad que 

los modelos tipo LSTM, y mayor especificidad textual que los enfoques basados exclusivamente en frecuencia de 

términos o movilidad. 

 

Los casos activos de COVID-19 y el número máximo esperado de casos positivos, se utilizaron para calcular un 

índice de riesgo que se calcula diariamente. A partir del índice de riesgo, se asignaron los colores en el mapa de calor 

que muestra la distribución geográfica del riesgo de contagio en los estados de la República Mexicana.  

 

Con el fin de contrastar visualmente el riesgo estimado por el sistema propuesto con el semáforo epidemiológico 

de la Secretaría de Salud, se realizó una comparación cualitativa para el periodo del 1 al 14 de noviembre de 2021. 

La Figura 12 presenta dicha comparación: el panel A muestra el semáforo epidemiológico oficial; los paneles B, C y 

D corresponden a los mapas generados por este estudio para los días 1, 7 y 14 de noviembre, respectivamente.  
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FIGURA 12. Comparación visual entre el semáforo epidemiológico oficial (panel A) y el índice de riesgo 

estimado a partir de afirmaciones clasificadas (paneles B–D). Fechas representadas: 01/11/2021 (B), 

07/11/2021 (C), 14/11/2021 (D). 

 

De manera similar, se realizó una segunda comparación cualitativa para el periodo del 29 de noviembre al 12 de 

diciembre de 2021. La Figura 13 presenta los resultados: el panel A muestra el semáforo epidemiológico oficial para 

dicho intervalo, mientras que los paneles B, C y D corresponden a los mapas generados por este estudio para los días 

29 de noviembre, 6 de diciembre y 12 de diciembre, respectivamente. La escala de colores empleada se detalla en la 

leyenda. 

 
FIGURA 13. Comparación visual entre el semáforo epidemiológico oficial (panel A) y el índice de riesgo 

estimado a partir de afirmaciones clasificadas (paneles B–D). Fechas representadas: 29/11/2021 (B), 

06/12/2021 (C), 12/12/2021 (D). 

 

De manera similar, se llevó a cabo una tercera comparación cualitativa correspondiente al periodo del 10 de enero 

al 23 de enero de 2022. En la Figura 14 se muestran los resultados: el panel A representa el semáforo de la Secretaría 

de Salud para dicho intervalo, mientras que los paneles B, C y D corresponden a los mapas generados por este estudio 

para los días 10, 16 y 23 de enero, respectivamente. 
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FIGURA 14. Comparación visual entre el semáforo epidemiológico oficial (panel A) y el índice de riesgo 

estimado a partir de afirmaciones clasificadas (paneles B–D). Fechas representadas: 10/01/2022 (B), 

16/01/2022 (C), 23/01/2022 (D). 

 

Aunque el índice de riesgo desarrollado en este estudio se basa en afirmaciones positivas extraídas de X y no en 

indicadores clínicos oficiales, la comparación visual realizada con el semáforo epidemiológico de la Secretaría de 

Salud permite identificar zonas de coincidencia y divergencia relevantes. Esta validación visual respalda la utilidad 

del enfoque como herramienta complementaria para la vigilancia geoespacial. 

 

A diferencia del semáforo de la Secretaría de Salud, que se actualizaba cada 14 días con base en múltiples métricas 

(por ejemplo, ocupación hospitalaria, tasa de reproducción, número de contagios, disponibilidad de pruebas, entre 

otras), el índice propuesto en este estudio se actualiza diariamente. Esto representa una ventaja significativa, al 

permitir una detección más oportuna de cambios recientes en la dinámica epidemiológica. Esta diferencia en la 

frecuencia de actualización implica que el sistema basado en redes sociales puede anticipar variaciones de riesgo 

con horas o días de antelación, frente a esquemas oficiales que dependen de procesos institucionales más lentos para 

consolidar y validar datos. 

 

Además, al emplear exclusivamente publicaciones clasificadas como afirmaciones positivas (en lugar de 

menciones generales sobre COVID-19, como en el caso de [4]), este enfoque ofrece una representación más específica 

de zonas potenciales de contagio activo, priorizando la especificidad de la señal sobre el volumen total de 

publicaciones. 

 

Otros estudios, como [19] y [18], se enfocan principalmente en el análisis textual para identificar síntomas o 

diagnósticos auto-reportados a partir de publicaciones en redes sociales. Sin embargo, dichos enfoques no 

incorporan componentes de análisis geoespacial, lo que limita su utilidad para identificar zonas de riesgo localizadas. 

A diferencia de estos trabajos, la propuesta presentada en este estudio combina la detección semántica de contagios 

con proyección temporal y espacial, ofreciendo una solución integral y dinámica que puede adaptarse a distintas 

regiones y servir como marco replicable para futuras enfermedades emergentes. 
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CONCLUSIONES 

El análisis de menciones relacionadas con COVID-19 en X, combinado con la modelización mediante BERT y la 
función de Gompertz, constituye una herramienta de monitoreo que puede complementar los métodos 
convencionales de vigilancia epidemiológica. La correlación observada entre los picos de menciones en X y los datos 
oficiales de contagio no implica una relación causal, pero sugiere una posible sincronicidad temporal. Este hallazgo 
exploratorio pone de manifiesto que las redes sociales pueden captar señales tempranas de brotes, especialmente 
en contextos donde los sistemas formales presentan rezagos en la recolección y consolidación de información. 

A través de la metodología empleada, se ha logrado una caracterización predictiva del comportamiento del virus, 
donde el uso de ventanas móviles aporta dinamismo al modelo, facilitando así una estimación ajustada y continua 
de la situación epidemiológica.  

La representación geoespacial del riesgo mediante mapas de calor refuerza la utilidad de este enfoque, 
proporcionando una visualización estratégica que permite identificar áreas de riesgo elevado en la República 
Mexicana, favoreciendo la toma de decisiones informadas en salud pública. 

X ofrece una fuente vasta de datos en tiempo real que puede aprovecharse para el monitoreo epidemiológico. No 
obstante, es importante tener en cuenta que X no representa equitativamente a toda la población, ya que ciertos 
grupos demográficos (como adultos mayores, personas con menor acceso a tecnología y poblaciones rurales) 
tienden a estar subrepresentados en el uso de redes sociales. Por lo tanto, el monitoreo epidemiológico basado en X 
debe usarse con cautela y como un complemento de la vigilancia epidemiológica tradicional. 

Finalmente, este enfoque de monitoreo requiere ajustes específicos según el caso de estudio, ya sea en el seguimiento 
de diferentes enfermedades o en la aplicación en otros países. 

Como parte del trabajo futuro, se plantea mejorar el etiquetado automático de textos afirmativos relacionados con 
COVID-19 y extender esta metodología a otras enfermedades infecciosas. Para ello, se prevé explorar modelos 
avanzados, como GPT y otros basados en atención (transformers).  

Además, se contempla combinar el modelo Gompertz con el modelo autorregresivo integrado de media móvil 
(ARIMA) o con redes neuronales recurrentes (RNN) para mejorar la precisión del modelo predictivo en proyecciones 
mayores a 5 días. De tal manera que el modelo Gompertz capture la fase inicial de crecimiento, y el modelo ARIMA o 
las redes neuronales recurrentes, se encarguen de las fases posteriores. 

Asimismo, se propone desarrollar un índice de riesgo más robusto mediante la incorporación de variables 
adicionales, tales como factores socioeconómicos, comportamiento de movilidad y patrones demográficos. Un índice 
de riesgo más robusto se ajustará mejor a las realidades locales, lo cual contribuirá a una mejor comprensión de la 
dinámica de contagio. 
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